DOI QR코드

DOI QR Code

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah (Department of Statistics and Actuarial Science, College of Basic and Applied Sciences, University of Ghana) ;
  • Tertius de Wet (Department of Statistics and Actuarial Science, Stellenbosch University) ;
  • Abhik Ghosh (Interdisciplinary Statistical Research Unit, Indian Statistical Institute) ;
  • Haitham M. Yousof (Department of Statistics, Mathematics and Insurance, Benha University)
  • Received : 2022.12.28
  • Accepted : 2023.08.01
  • Published : 2023.11.30

Abstract

The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

Keywords

Acknowledgement

Tertius de Wet's work was supported by the South African NRF under grant number 115038. Also, the research of Abhik Ghosh is partially supported by an INSPIRE Faculty Research Grant from the Department of Science and Technology, Government of India.

References

  1. Basu A, Harris IR, Hjort NL, and Jones MC (1998). Robust and efficient estimation by minimising a density power divergence, Biometrika, 85, 549-559. https://doi.org/10.1093/biomet/85.3.549
  2. Beirlant J, Dierckx G, Goegebeur Y, and Matthys G (1999). Tail index estimation and an exponential regression model, Extremes, 2, 177-200. https://doi.org/10.1023/A:1009975020370
  3. Beirlant J and Matthys G (2001). Extreme quantile estimation for heavy tailed distributions (Technical report), Department of Mathematics, K. U. Leuven, Leuven, Belgium.
  4. de Haan L (1990). Fighting the arch-enemy with mathematics, Statistica Neerlandica, 44, 45-68. https://doi.org/10.1111/j.1467-9574.1990.tb01526.x
  5. Dell'Aquila R and Embrechts P (2006). Extremes and robustness: A contradiction?, Fin Mkts Portfolio Mgmt, 20, 103-118. https://doi.org/10.1007/s11408-006-0002-x
  6. Dierckx G, Goegebeur Y, and Guillou A (2013). An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index, Journal of Multivariate Analysis, 121, 70-86. https://doi.org/10.1016/j.jmva.2013.06.011
  7. Fraga Alves MI, Gomes MI, and de Haan L (2003). A new class of semi-parametric estimators of the second order parameter, Portugaliae Mathematica, 60, 193-213.
  8. Ghosh A (2017). Divergence based robust estimation of the tail index through an exponential regression model, Statistical Methods & Applications, 26, 181-213. https://doi.org/10.1007/s10260-016-0364-9
  9. Ghosh A and Basu A (2013). Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression, Electronic Journal of Statistics, 7, 2420-2456. https://doi.org/10.1214/13-EJS847
  10. Gilli M and Kellezi E (2006). An application of extreme value theory for measuring financial risk, Computational Economics, 27, 1-23. https://doi.org/10.1007/s10614-005-9013-3
  11. Goegebeur Y, Guillou A, and Verster A (2014). Robust and asymptotically unbiased estimation of extreme quantiles for heavy tailed distributions, Statistics and Probability Letters, 87, 108-114. https://doi.org/10.1016/j.spl.2014.01.010
  12. Gomes MI, de Hann L, and Rodrigues L (2008). Tail index estimation for heavy-tailed models: Accommodation of bias in weighted log-excesses, Journal of the Royal Statistical Society Series B, 70, 31-52. https://doi.org/10.1111/j.1467-9868.2007.00620.x
  13. Hill B (1975). A simple general approach to inference about the tail of a distribution, Annals of Statistics, 3, 1163-1174. https://doi.org/10.1214/aos/1176343247
  14. Juarez SF and Schucany WR (2004). Robust and efficient estimation for the generalized Pareto distribution, Extremes, 7, 237-251. https://doi.org/10.1007/s10687-005-6475-6
  15. Kim M and Lee S (2008). Estimation of a tail index based on minimum density power divergence, Journal of Multivariate Analysis, 99, 2453-2471. https://doi.org/10.1016/j.jmva.2008.02.031
  16. Minkah R (2016). An application of extreme value theory to the management of a hydroelectric dam, SpringerPlus, 5, 1-12. https://doi.org/10.1186/s40064-016-1719-2
  17. Minkah R, de Wet T, and Ghosh A (2023). Robust estimation of Pareto-type tail index through an exponential regression model, Communications in Statistics - Theory and Methods, 52, 479-498. https://doi.org/10.1080/03610926.2021.1916530
  18. Peng L and Qi Y (2006). Confidence regions for high quantiles of a heavy tailed distribution, Annals of Statistics, 34, 1964-1986. https://doi.org/10.1214/009053606000000416
  19. Pisarenko VF and Sornette D (2003). Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution, Pure and Applied Geophysics, 160, 2343-2364. https://doi.org/10.1007/s00024-003-2397-x
  20. Vandewalle B, Beirlant J, Christmann A, and Hubert M (2007). A robust estimator for the tail index of Pareto-type distributions, Computational Statistics & Data Analysis, 51, 6252-6268. https://doi.org/10.1016/j.csda.2007.01.003