DOI QR코드

DOI QR Code

Electrochemical Behavior of AZ31 Mg Alloy in Neutral Aqueous Solutions Containing Various Anions

  • Duyoung Kwon (Nano-Surface Materials Division, Korea Institute of Materials Science) ;
  • Hien Van Pham (Nano-Surface Materials Division, Korea Institute of Materials Science) ;
  • Pungkeun Song (Department of Materials Science and Engineering, Pusan National university) ;
  • Sungmo Moon (Nano-Surface Materials Division, Korea Institute of Materials Science)
  • 투고 : 2023.03.27
  • 심사 : 2023.04.25
  • 발행 : 2023.11.30

초록

This work was performed to characterize the electrochemical behavior of AZ31 Mg alloy in neutral aqueous solutions where Cl-, SO42-, PO43-, and F- ions were present and pH was adjusted to 6 to exclude the contribution of H+ and OH- ions. Open-circuit potential (OCP) transient, electrochemical impedance spectroscopy (EIS) and potnetiodynamic polarization curves were employed. The OCP value appeared to decrease in the order of F- > Cl- > SO42- > PO43- ions while corrosion current density increased in the same order. Electrochemical impedance spectroscopy (EIS) data showed two capacitive arcs in all the solutions and one more inductive arc appeared in PO43--containing solution. By fitting of two capacitive arcs, capacitance of dense film (Cdf), resistance of porous film (Rpf) and double layer capacitance (Cdl) and charge transfer resistance (Rct) beneath the porous films were obtained. A simplified model in which various thicknesses and coverages of dense and porous films are assumed to be present on the AZ31 Mg alloy surface, is suggested to explain the effects of four different anions on the electrochemical behavior of AZ31 Mg alloy.

키워드

과제정보

This work was financially supported by the Fundamental Research Program of the Korean Institute of Materials Science (Project No. PNK9450).

참고문헌

  1. G. Song and A. Atrens, Adv. Eng. Mater., 2003, 5(12), 837-858.  https://doi.org/10.1002/adem.200310405
  2. M. P. Brady, W. J. Joost, and C. David Warren, Corrosion, 2016, 73(5), 452-462.  https://doi.org/10.5006/2255
  3. S. V. S. Prasad, S. B. Prasad, K. Verma, R. K. Mishra, V. Kumar, and S. Singh, J. Magnes. Alloy, 2022, 10(1), 1-61  https://doi.org/10.1016/j.jma.2021.05.012
  4. P. F. King, J. Electrochem. Soc., 1966, 113(6), 536. 
  5. G. Song and A. Atrens, Adv. Eng. Mater., 1999, 1(1), 11-33.  https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
  6. J. Muldoon, C. B. Bucur, A. G. Oliver, J. Zajicek, G. D. Allred, and W. C. Boggess, Energy Environ. Sci., 2013, 6(2), 482-487.  https://doi.org/10.1039/C2EE23686A
  7. R.-C. Zeng, Y. Hu, S.-K. Guan, H.-Z. Cui, and E.-H. Han, Corrosion Sci., 2014, 86, 171-182.  https://doi.org/10.1016/j.corsci.2014.05.006
  8. M. Esmaily, J. E. Svensson, S. Fajardo, N. Birbilis, G. S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L. G. Johansson, Prog. Mater. Sci., 2017, 89, 92-193.  https://doi.org/10.1016/j.pmatsci.2017.04.011
  9. G. S. Frankel, J. Electrochem. Soc., 1998, 145(6), 2186. 
  10. G. Williams and H. N. McMurray, J. Electrochem. Soc., 2008, 155(7), C340. 
  11. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and S. Feliu, Electrochim. Acta, 2008, 53(27), 7890-7902.  https://doi.org/10.1016/j.electacta.2008.06.001
  12. G. Williams, N. Birbilis, and H. N. McMurray, Faraday Discuss., 2015, 180, 313-330.  https://doi.org/10.1039/C4FD00268G
  13. J. Li, Q. Jiang, H. Sun, and Y. Li, Corros. Sci., 2016, 111, 288-301.  https://doi.org/10.1016/j.corsci.2016.05.019
  14. Y. Cubides, A. I. Karayan, D. Zhao, L. Nash, K. Xie, and H. Castaneda, J. Alloy. Compd., 2020, 840, 155786. 
  15. G. S. Pereira, G. Y. Koga, J. A. Avila, I. M. Bittencourt, F. Fernandez, M. H. Miyazaki, W. J. Botta, and W. W. B. Filho, Mater. Chem. Phys., 2021, 272, 124930.  https://doi.org/10.1016/j.matchemphys.2021.124930
  16. G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, and V. Vivier, J. Electrochem. Soc., 2007, 154(2), C108. 
  17. J. Chen, J. Wang, E. Han, J. Dong, and W. Ke, Electrochim. Acta, 2007, 52(9), 3299-3309.  https://doi.org/10.1016/j.electacta.2006.10.007
  18. S. Shetty, J. Nayak, and A. N. Shetty, J. Magnes. Alloy., 2015, 3(3), 258-270.  https://doi.org/10.1016/j.jma.2015.07.004
  19. M. G. Acharya and A. N. Shetty, J. Magnes. Alloy., 2019, 7(1), 98-112.  https://doi.org/10.1016/j.jma.2018.09.003
  20. A. Soltan, M. S. Dargusch, Z. Shi, D. Gerrard, S. A. Shabibi, Y.-C. Kuo, and A. Atrens, Mater. Corros., 2020, 71(6), 956-979.  https://doi.org/10.1002/maco.201911375
  21. H.-W. Chen, H. Lin, C.-Y. Huang, C.-H. Shi, and C.-S. Lin, J. Electrochem. Soc., 2022, 169(8), 081504. 
  22. D. Kwon, P.-K. Song, and S. Moon, J. Korean Inst. Surf. Eng., 2021, 54(4), 184-193. 
  23. D. Kwon, P.-K. Song, and S. Moon, J. Korean Inst. Surf. Eng., 2022, 55(1), 24-31. 
  24. R. Ambat, N. N. Aung, and W. Zhou, J. Appl. Electrochem., 2000, 30, 865-874.  https://doi.org/10.1023/A:1004011916609
  25. H. Inoue, K. Sugahara, A. Yamamoto, and H. Tsubakino, Corros. Sci., 2002, 44(3), 603-610.  https://doi.org/10.1016/S0010-938X(01)00092-0
  26. X. Cui, Q. Li, Y. Li, F. Wang, G. Jin, and M. Ding, Appl. Surf. Sci., 2008, 255(5), 2098-2103.  https://doi.org/10.1016/j.apsusc.2008.06.199
  27. Q. Jin, G. Tian, J. Li, Y. Zhao, and H. Yan, Colloid Surf. A: Physicochem. Eng. Asp., 2019, 577, 8-16.  https://doi.org/10.1016/j.colsurfa.2019.05.060
  28. M. P. Brady, G. Rother, L. M. Anovitz, K. C. Littrell, K. A. Unocic, H. H. Elsentriecy, G.-L. Song, J. K. Thomson, N. C. Gallego, and B. Davis, J. Electrochem. Soc., 2015, 162, C140. 
  29. Y. Wang, G. Wu, and J. Sun, Scanning, 2020, 2020, 4860256.  https://doi.org/10.1155/2020/4860256
  30. L. Xu, X. Liu, K. Sun, R. Fu, and G. Wang, Materials, 2022, 15(7), 2613. 
  31. B. R. Fazal and S. M. Moon, J. Korean Inst. Surf. Eng., 2016, 49(5), 395-400.  https://doi.org/10.5695/JKISE.2016.49.5.395
  32. N. V. Phuong, M. Gupta, and S. Moon, Trans. Nonferrous Met. Soc. China, 2017, 27(5), 1087-1095.  https://doi.org/10.1016/S1003-6326(17)60127-4
  33. P. C. Banerjee, R. K. S. Raman, Y. Durandet, and G. McAdam, Corros. Sci., 2011, 53(4), 1505-1514.  https://doi.org/10.1016/j.corsci.2011.01.017
  34. M. Jamesh, S. Kumar, and T. S. N. S. Narayanan, Corros. Sci., 2011, 53(2), 645-654.  https://doi.org/10.1016/j.corsci.2010.10.011
  35. I. B. Singh, M. Singh, and S. Das, J. Magnes. Alloy, 2015, 3(2), 142-148.  https://doi.org/10.1016/j.jma.2015.02.004
  36. S.-M. Moon and S.-I. Pyun, Electrochim. Acta, 1998, 43(21-22), 3117-3126.  https://doi.org/10.1016/S0013-4686(97)10194-3
  37. S.-I. Pyun, S.-M. Moon, S.-H. Ahn, and S.-S. Kim, Corros. Sci., 1999, 41(4), 653-667. https://doi.org/10.1016/S0010-938X(98)00132-2