DOI QR코드

DOI QR Code

Bioelectricity Generation Using a Crosslinked Poly(vinyl alcohol) (PVA) and Chitosan (CS) Ion Exchange Membrane in Microbial Fuel Cell

  • Badillo-Cardoso Jonathan (School of Chemical Engineering, Pusan National University) ;
  • Minsoo Kim (School of Chemical Engineering, Pusan National University) ;
  • Jung Rae Kim (School of Chemical Engineering, Pusan National University)
  • Received : 2023.05.24
  • Accepted : 2023.07.17
  • Published : 2023.11.30

Abstract

Microbial fuel cells (MFCs) are a bioelectrochemical system where electrochemically active bacteria convert organic waste into electricity. Poly(vinyl alcohol) (PVA) and chitosan (CS) are polymers that have been studied as potential alternative ion exchange membranes to Nafion for many electrochemical systems. This study examined the optimal mixing ratio of PVA and chitosan CS in a PVA:CS composite membrane for MFC applications. PVA:CS composite membranes with 1:1, 2:1, and 3:1 ratios were synthesized and tested. The water uptake and ion exchange capacity, Fourier transform infrared spectra, and scanning electron microscopy images were analyzed to determine the physicochemical properties of PVA:CS membranes. The prepared membranes were applied to the ion exchange membrane of the MFC system, and their effects on the electrochemical performance were evaluated. These results showed that the composite membrane with a 3:1 (PVA:CS) ratio showed comparable performance to the commercialized Nafion membrane and produced more electricity than the other synthesized membranes. The PVA:CS membrane implemented MFCs produced a maximum power density of 0.026 mW cm-2 from organic waste with stable performance. Therefore, it can be applied to a cost-effective MFC system.

Keywords

Acknowledgement

This research was supported by the project of Development and demonstration of an integrated conversion process to produce high-purity biohydrogen, which is financially supported by the Korean Ministry of Environment (MOE Project No202100324000). This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20214000000140, Graduate School of Convergence for Clean Energy Integrated Power Generation).

References

  1. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hanse, S. Schloemer, and C. von Stechow (eds.), Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change, Cambridge University Press, USA, 2011, ISBN 1139505599. 
  2. D. Pant, A. Singh, G. V. Bogaert, S. I. Olsen, P. S. Nigam, L. Diels, and K. Vanbroekhoven, RSC Adv., 2012, 2, 1248-1263.  https://doi.org/10.1039/C1RA00839K
  3. M. Kim, S. Li, Y. E. Song, D.-Y. Lee, and J. R. Kim, Chem. Eng. J., 2022, 446(2), 137079. 
  4. M. Kim, Y. E. Song, S. Li, and J. R. Kim, J. Electrochem. Sci. Technol., 2021, 12(3), 297-301.  https://doi.org/10.33961/jecst.2020.01739
  5. Y. E. Song, S. Lee, M. Kim, J.-G. Na, J. Lee, J. Lee, and J. R. Kim, J. Power Sources, 2020, 451, 227816. 
  6. A. A. Mier, H. Olvera-Vargas, M. Mejia-Lopez, A. Longoria, L. Verea, P. J. Sebastian, and D. M. Aria, Chemosphere, 2021, 283, 131138. 
  7. H. Liu and B. E. Logan, Environ. Sci. Technol., 2004, 38(14), 4040-4046.  https://doi.org/10.1021/es0499344
  8. B. Min, J. Kim, S. Oh, J. M. Regan, and B. E. Logan, Water Res., 2005, 39(20), 4961-4968.  https://doi.org/10.1016/j.watres.2005.09.039
  9. M. Rahimnejad, M. Ghasemi, G. D. Najafpour, M. Ismail, A. W. Mohammad, A. A. Ghoreyshi, and S. H. A. Hassan, Electrochim. Acta, 2012, 85, 700-706.  https://doi.org/10.1016/j.electacta.2011.08.036
  10. G. Hernandez-Flores, H. M. Poggi-Varaldo, O. Solorza-Feria, T. Romero-Castanon, E. Rios-Leal, J. Galindez-Mayer, and F. Esparza-Garcia, Int. J. Hydrogen Energy, 2015, 40(28), 17323-17331.  https://doi.org/10.1016/j.ijhydene.2015.06.057
  11. W.-W. Li, G.-P. Sheng, X.-W. Liu, and H.-Q. Yu, Bioresource Technol., 2011, 102(1), 244-252.  https://doi.org/10.1016/j.biortech.2010.03.090
  12. S.-E. Oh and B. E. Logan, Appl. Microbiol. Biotechnol., 2006, 70, 162-169.  https://doi.org/10.1007/s00253-005-0066-y
  13. K. A. Mauritz and R. B. Moore, Chem. Rev., 2004, 104(10), 4535-4586.  https://doi.org/10.1021/cr0207123
  14. A. Patra, Journal of the U.S. SJWP, 2008, 1, 72-85. 
  15. R. A. Rozendal, H. V. M. Hamelers, K. Rabaey, J. Keller, and C. J. N. Buisman, Trends Biotechnol., 2008, 26(8), 450-459.  https://doi.org/10.1016/j.tibtech.2008.04.008
  16. P. Srinophakun, A. Thanapimmetha, S. Plangsri, S. Vetchayakunchai, and M. Saisriyoot, J. Clean. Prod., 2017, 142(3), 1274-1282.  https://doi.org/10.1016/j.jclepro.2016.06.153
  17. J. Ma and Y. Sahai, Carbohydr. Polym., 2013, 92(2), 955-975.  https://doi.org/10.1016/j.carbpol.2012.10.015
  18. H. J. Malmiri, M. A. G. Jahanian, and A. Berenjian, Am. J. Biochem. Biotechnol., 2012, 8(4), 203-219.  https://doi.org/10.3844/ajbbsp.2012.203.219
  19. P. K. Varshney and S. Gupta, Ionics, 2011, 17, 479-483.  https://doi.org/10.1007/s11581-011-0563-1
  20. S. L. Holder, C.-H. Lee, S. R. Popuri, and M.-X. Zhuang, Carbohydr. Polym., 2016, 149, 251-262.  https://doi.org/10.1016/j.carbpol.2016.04.118
  21. P. Mukoma, B. R. Jooste, and H. C. M. Vosloo, J. Power Sources, 2004, 136(1), 16-23.  https://doi.org/10.1016/j.jpowsour.2004.05.027
  22. P. Mukoma, B. R. Jooste, and H. C. M. Vosloo, J. Membr. Sci., 2004, 243(1-2), 293-299.  https://doi.org/10.1016/j.memsci.2004.06.032
  23. M. A. Witt, G. Barra, J. Bertolino et al., J. Braz. Chem. Soc., 2010, 21, 1692-1698.  https://doi.org/10.1590/S0103-50532010000900014
  24. A. S. Marf, R. M. Abdullah, and S. B. Aziz, Membranes, 2020, 10, 71. 
  25. M. J. Gonzalez-Pabon, F. Figueredo, D. C. Martinez-Casillas, and E. Corton, PLOS ONE, 2019, 14(9), e0222538. 
  26. M. J. Gonzalez-Pabon, R. Cardena, E. Corton, and G. Buitron, Bioresour. Technol., 2021, 319, 124168. 
  27. J.-W. Rhim, H. B. Park, C.-S. Lee, J.-H. Jun, D. S. Kim, and Y. M. Lee, J. Membr. Sci., 2004, 238(1-2), 143-151.  https://doi.org/10.1016/j.memsci.2004.03.030
  28. R. Rudra, V. Kumar, and P. P. Kundu, RSC Adv., 2015, 5, 83436-83447.  https://doi.org/10.1039/C5RA16068E
  29. W. Lan, S. Wang, M. Chen, D. E. Sameen, K. Lee, and Y. Liu, Int. J. Biol. Macromol., 2020, 145, 722-732.  https://doi.org/10.1016/j.ijbiomac.2019.12.230
  30. Y. Kim, S.-H. Shin, I. S. Chang, and S.-H. Moon, J. Membr. Sci., 2014, 463, 205-214.  https://doi.org/10.1016/j.memsci.2014.03.061
  31. L. Wang, X. Zuo, A. Raut, R. Isseroff, Y. Xue, Y. Zhou, B. Sandhu, T. Schein, T. Zeliznyak, P. Sharma, S. Sharma, B. S. Hsiao, and M. H. Rafailovich, Sustain. Energy Fuels, 2019, 3, 2725-2732.  https://doi.org/10.1039/C9SE00381A
  32. B. Smitha, S. Sridhar, and A. A. Khan, J. Membr. Sci., 2005, 259(1-2), 10-26.  https://doi.org/10.1016/j.memsci.2005.01.035
  33. C. A. Pohl, Talanta, 2018, 177, 18-25.  https://doi.org/10.1016/j.talanta.2017.09.042
  34. B. Smitha, S. Sridhar, and A. A. Khan, J. Appl. Polym. Sci., 2005, 95(5), 1154-1163.  https://doi.org/10.1002/app.20982
  35. G. Chen, B. Wei, Y. Luo, B. E. Logan, and M. A. Hickner, ACS Appl. Mater. Interfaces, 2012, 4, 6454-6457.  https://doi.org/10.1021/am302301t
  36. A. Morin, F. Xu, G. Gebel, and O. Diat, Int. J. Hydrogen Energy, 2011, 36(4), 3096-3109.  https://doi.org/10.1016/j.ijhydene.2010.11.070
  37. D. Das (ed.), Microbial fuel cell: A bioelectrochemical system that converts waste to watts, Capital Publishing Company, New Delhi, India, 2018. 
  38. F. Ghorbani, A. Zamanian, and B. Torabinejad, J. Polym. Eng., 2020, 40(2), 109-119.  https://doi.org/10.1515/polyeng-2019-0219
  39. M. Kim, S. Li, Y. E. Song, S.-Y. Park, H. Kim, J. Jae, I. Chung, and J. R. Kim, Chemosphere, 2023, 313, 137388. 
  40. M. A. Abureesh, A. A. Oladipo, and M. Gazi, Int. J. Biol. Macromol., 2016, 90, 75-80.  https://doi.org/10.1016/j.ijbiomac.2015.10.001
  41. B. Ma, X. Li, A. Qin, and C. He, Carbohydr. Polym., 2013, 91(2), 477-482.  https://doi.org/10.1016/j.carbpol.2012.07.081
  42. A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, Indones. J. Sci. Technol., 2019, 4(1), 97-118.  https://doi.org/10.17509/ijost.v4i1.15806
  43. M. F. Z. Kadir, S. R. Majid, and A. K. Arof, Electrochim. Acta, 2010, 55(4), 1475-1482.  https://doi.org/10.1016/j.electacta.2009.05.011
  44. N. N. Mobarak, A. Ahmad, M. P. Abdullah, N. Ramli, and M. Y. A. Rahman, Electrochim. Acta, 2013, 92, 161-167.  https://doi.org/10.1016/j.electacta.2012.12.126
  45. E. Antolini, Biosens. Bioelectron., 2015, 69, 54-70.  https://doi.org/10.1016/j.bios.2015.02.013
  46. R. Sigwadi, M. S. Dhlamini, T. Mokrani, F. emavhola, P. F. Nonjola, and P. F. Msomi, Heliyon, 2019, 5(8), e02240. 
  47. J. R. Kim, S. Cheng, S.-E. Oh, and B. E. Logan, Environ. Sci. Technol., 2007, 41(3), 1004-1009. https://doi.org/10.1021/es062202m