DOI QR코드

DOI QR Code

In vitro anti-Trypanosoma cruzi activity of methanolic extract of Bidens pilosa and identification of active compounds by gas chromatography-mass spectrometry analysis

  • Gabriel Enrique Cazares-Jaramillo (Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Patologia Molecular y Experimental) ;
  • Zinnia Judith Molina-Garza (Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Patologia Molecular y Experimental) ;
  • Itza Eloisa Luna-Cruz (Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia) ;
  • Luisa Yolanda Solis-Soto (Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Bioquimica y Genetica de Microorganismos ) ;
  • Jose Luis Rosales-Encina (Departamento de Infectomica y Patogenesis Molecular, Centro de Investigacion y de Estudios Avanzados de IPN) ;
  • Lucio Galaviz-Silva (Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Patologia Molecular y Experimental)
  • Received : 2023.06.07
  • Accepted : 2023.08.14
  • Published : 2023.11.30

Abstract

Chagas disease, caused by Trypanosoma cruzi parasite, is a significant but neglected tropical public health issue in Latin America due to the diversity of its genotypes and pathogenic profiles. This complexity is compounded by the adverse effects of current treatments, underscoring the need for new therapeutic options that employ medicinal plant extracts without negative side effects. Our research aimed to evaluate the trypanocidal activity of Bidens pilosa fractions against epimastigote and trypomastigote stages of T. cruzi, specifically targeting the Brener and Nuevo León strains-the latter isolated from Triatoma gerstaeckeri in General Terán, Nuevo León, México. We processed the plant's aerial parts (stems, leaves, and flowers) to obtain a methanolic extract (Bp-mOH) and fractions with varying solvent polarities. These preparations inhibited more than 90% of growth at concentrations as low as 800 ㎍/ml for both parasite stages. The median lethal concentration (LC50) values for the Bp-mOH extract and its fractions were below 500 ㎍/ml. Tests for cytotoxicity using Artemia salina and Vero cells and hemolytic activity assays for the extract and its fractions yielded negative results. The methanol fraction (BPFC3MOH1) exhibited superior inhibitory activity. Its functional groups, identified as phenols, enols, alkaloids, carbohydrates, and proteins, include compounds such as 2-hydroxy-3-methylbenzaldehyde (50.9%), pentadecyl prop-2-enoate (22.1%), and linalool (15.4%). Eight compounds were identified, with a match confirmed by the National Institute of Standards and Technology (NIST-MS) software through mass spectrometry analysis.

Keywords

Acknowledgement

This research was supported by PAICyT-UANL grant # CN943-19, and 125-CS-2022 (ZJMG and LGS). We are also grateful to CONAHCyT for the scholarship granted to the first author (GECJ) during her Ph.D. degree. We thank to the staff of the Laboratory of Molecular and Experimental Pathology of the FCB for their technical assistance.

References

  1. World Health Organization. Chagas disease (American trypanosomiasis) [Internet]; [cited 2021 Apr 26]. Available from: https://www.who.int/health-topics/chagas-disease#tab=tab_1
  2. Goupil LS, McKerrow JH. Introduction: drug discovery and development for neglected diseases. Chem Rev 2014;114(2):11131-11137. https://doi.org/10.1021/cr500546h
  3. Tobinaga S, Sharma MK, Aalbersberg WGL, Watanabe K, Iguchi K, et al. Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Med 2009;75(6):624-628. https://doi.org/10.1055/s-0029-1185377
  4. Garcia M, Monzote L, Montalvo AM, Scull R. Screening of medicinal plants against Leishmania amazonensis. Pharm Biol 2010;48(9):1053-1058. https://doi.org/10.3109/13880200903485729
  5. Mwaniki LM, Mose JM, Mutwiri T, Mbithi JM. Evaluation of trypanocidal activity of Bidens pilosa and Physalis peruviana against Trypanosoma brucei rhodesiense. Am J Lab Med 2017;2(4):69-73. https://doi.org/10.11648/j.ajlm.20170204.15
  6. Silveira AC da, Lazzarotto M. Evaluation of yerba mate fruit pulp total and fractioned soxhlet extraction using thermal analyses. 2019;99-102. [cited 2022 Dec 13]; Available from: http://www.alice.cnptia.embrapa.br/handle/doc/1115077
  7. Revathy S, Elumalai S, Benny M, Antony B. Isolation, purification, and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. J Exp Sci 2011;2(7):21-25.
  8. Manual de practicas de bioquimica [por] Juan Antonio Rodriguez Arzave [Internet]; [cited 2022 Dec 13]. Available from: https://dgb.uanl.mx/handle/201504211/6927
  9. Acosta H, Burchmore R, Naula C, Gualdron-Lopez M, Quintero-Troconis E, et al. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2019;229:62-74. https://doi.org/10.1016/j.molbiopara.2019.02.008
  10. Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 1985;16(3):315-327. https://doi.org/10.1016/0166-6851(85)90073-8
  11. Muelas-Serrano S, Nogal-Ruiz JJ, Gomez-Barrio A. Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes. Parasitol Res 2000;86(12):999-1002. https://doi.org/10.1007/pl00008532
  12. Sherma J, Fried B. Handbook of Thin-Layer Chromatography. 3rd ed. Marcel Dekker. New York, USA. 2003, pp 29-31.
  13. Kramida A, Fuhr JR. Atomic Line Broadening Bibliographic Database (Version 3.0). National Institute of Standards and Technology [Internet]; [cited 2020 Jul 31]. Available from: https://physics.nist.gov/linebrbib
  14. Mclaughlin JL. Crown gall tumors on potato discs and brine shrimp lethality: two simple bioassays for higher plant screening and fractionation. Methods in plant. Biochemistry 1991;6:1-32. https://upcommons.upc.edu/bitstream/handle/2099/2733/5CROMGASES.pdf
  15. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, et al. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 1982;45(5):31-34. https://doi.org/10.1055/s-2007-971236
  16. Ahmad R, Fatima A, Srivastava AN, Khan MA. Evaluation of apoptotic activity of Withania coagulans methanolic extract against human breast cancer and Vero cell lines. J Ayurveda Integr Med 2017;8(3):177-183. https://doi.org/10.1016/j.jaim.2017.01.001
  17. Elizondo-Luevano JH, Verde-Star J, Gonzalez-Horta A, Castro-Rios R, Hernandez-Garcia ME, et al. In vitro effect of methanolic extract of Argemone mexicana against Trichomonas vaginalis. Korean J Parasitol 2020;58(2):135-145. https://doi.org/10.3347/kjp.2020.58.2.135
  18. Elizondo-Luevano JH, Castro-Rios R, Lopez-Aban J, Gorgojo-Galindo O, Fernandez-Soto P, et al. Berberine: a nematocidal alkaloid from Argemone mexicana against Strongyloides venezuelensis. Exp Parasitol 2020;220:108043. https://doi.org/10.1016/j.exppara.2020.108043
  19. Malagoli D. A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Invertebr Surviv J 2007;4:92-94. https://www.isj.unimore.it/index.php/ISJ/article/view/147/62
  20. Owoyemi OO, Oladunmoye MK. Phytochemical screening and antibacterial activities of Bidens pilosa L. and Tridax procumbens L. on skin pathogens. Int J Mod Biol Med 2017;8(1):24-46.
  21. Ajanaku C, Echeme J, Mordi R, Bolade O, Okoye S, et al. Invitro antibacterial, phytochemical, antimycobacterial activities and GC-MS analyses of Bidens pilosa leaf extract. J Microbiol Biotechnol Food Sci 2018;8(1):721-725. https://doi.org/10.15414/jmbfs.2018.8.1.721-725
  22. Wang R, Wu QX, Shi YP. Polyacetylenes and flavonoids from the aerial parts of Bidens pilosa. Planta Med 2010;76(9):893-896. https://doi.org/10.1055/s-0029-1240814
  23. Ba-Hamdan AHA, Aly MM, Bafeel SO. Antimicrobial activities and phytochemical analysis of the essential oil of Ocimum basilicum, collected from Jeddah Region, Saudi Arabia. J Microbiol Res 2014;4(6A):1-9. https://doi.org/10.5923/s.microbiology.201401.01
  24. Silva S de F, Blank DE, Peixoto CR, Moreira JJS, Moura NF. Bioactive compounds and antioxidant activity of Bunchosia glandulifera. Int J Food Prop 2015;19(2):467-473. https://doi.org/10.1080/10942912.2015.1033547
  25. Dost CK, Albuquerque S, Hemleben V, Engels W, Prado JC Jr. Molecular genetic characterization of different Trypanosoma cruzi strains and comparison of their development in Mus musculus and Calomys callosus. Parasitol Res 2002;88(7):609-616. https://doi.org/10.1007/s00436-001-0553-8
  26. Chokoe PK. Integrative analysis of the epigenetic modification in a breast cancer cell line treated with a bioactive extract of Bidens pilosa. Ph.D. Thesis. Faculty of Science and Agriculture, University of Limpopo; 2021. http://hdl.handle.net/10386/3693
  27. Achakzai JK, Anwar Panezai M, Kakar AM, Akhtar B, Akbar A, et al. In vitro antileishmanial activity and GC-MS analysis of whole plant hexane fraction of Achillea wilhelmsii (WHFAW). J Chem 2019;2019:5734257. https://doi.org/10.1155/2019/5734257
  28. Ohashi M, Amoa-Bosompem M, Kwofie KD, Agyapong J, Adegle R, et al. In vitro antiprotozoan activity and mechanisms of action of selected Ghanaian medicinal plants against Trypanosoma, Leishmania, and Plasmodium parasites. Phytother Res PTR 2018;32(8):1617-1630. https://doi.org/10.1002/ptr.6093
  29. Idris OA, Kerebba N, Horn S, Maboeta MS, Pieters R. Phytochemical-based evidence of the health benefits of Bidens pilosa extracts and cytotoxicity. Chemistry Africa 2023;6:1-22. https://doi.org/10.1007/s42250-023-00626-2
  30. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, et al. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 1982;45:31-34. https://doi.org/10.1055/s-2007-971236
  31. Hernandez MR, Canas JC. Citotoxicidad in vitro: sistema para la evaluacion de biomateriales y equipos medicos implantables en Cuba. Revista CENIC Ciencias Biologicas 2006;37(3):173-176. http://www.redalyc.org/articulo.oa?id=181220529011
  32. Osorio E, Arango GJ, Jimenez N, Alzate F, Ruiz G, et al. Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. J Ethnopharmacol 2007;111(3):630-635. https://doi.org/10.1016/j.jep.2007.01.015
  33. Valencia L, Munoz DL, Robledo SM, Echeverri F, Arango GJ, et al. Trypanocidal and cytotoxic activity of extracts of Colombian plants. Biomedica 2011;31(4):552-559 (in Spanish). https://doi.org/10.1590/S0120-41572011000400010
  34. Martinez M, Mancuello C, Pereira C, Gonzalez F, Prieto R, et al. Estudio espectrofotometrico de la actividad hemolitica del extracto crudo de Phoradendron bathyoryctum Eichler sobre eritrocitos humanos. Steviana 2013;5:114-121. https://doi.org/10.56152/ffs.v5i.1279
  35. Secretaria de Salud. Boletin Epidemiologico Sistema Nacional de Vigilancia Epidemiologica Sistema Unico de Informacion. 2020, pp 1-63 (in Spanish). https://www.gob.mx/cms/uploads/attachment/file/568960/sem31.pdf