Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1068719).
References
- Siddiqui R, Khan NA. Biology and pathogenesis of Acanthamoeba. Parasit Vectors 2012;5:6. https://doi.org/10.1186/1756-3305-5-6
- Diehl MLN, Paes J, Rott MB. Genotype distribution of Acanthamoeba in keratitis: a systematic review. Parasitol Res 2021;120(9):3051-3063. https://doi.org/10.1007/s00436-021-07261-1
- Iovieno A, Ledee DR, Miller D, Alfonso EC. Detection of bacterial endosymbionts in clinical acanthamoeba isolates. Ophthalmology 2010;117(3):445-452. https://doi.org/10.1016/j.ophtha.2009.08.033
- Scheikl U, Sommer R, Kirschner A, Rameder A, Schrammel B, et al. Free-living amoebae (FLA) co-occurring with legionellae in industrial waters. Eur J Protistol 2014;50(4):422-429. https://doi.org/10.1016/j.ejop.2014.04.002
- Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 2004;17(2):413-433. https://doi.org/10.1128/CMR.17.2.413-433.2004
- Nora T, Lomma M, Gomez-Valero L, Buchrieser C. Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 2009;4(6):691-701. https://doi.org/10.2217/fmb.09.47
- Segal G, Feldman M, Zusman T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 2005;29(1):65-81. https://doi.org/10.1016/j.femsre.2004.07.001
- Qiu J, Luo ZQ. Effector translocation by the Legionella Dot/Icm type IV secretion system. Curr Top Microbiol Immunol 2013;376:103-115. https://doi.org/10.1007/82_2013_345
- Moon EK, Kim MJ, Lee HA, Quan FS, Kong HH. Comparative analysis of differentially expressed genes in Acanthamoeba after ingestion of Legionella pneumophila and Escherichia coli. Exp Parasitol 2022;232:108188. https://doi.org/10.1016/j.exppara.2021.108188
- Kim MJ, Moon EK, Jo HJ, Quan FS, Kong HH. Identifying the function of genes involved in excreted vesicle formation in Acanthamoeba castellanii containing Legionella pneumophila. Parasit Vectors 2023;16(1):215. https://doi.org/10.1186/s13071-023-05824-y
- Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2018;9(1):185-196. https://doi.org/10.1080/21505594.2017.1373925
- Harding CR, Schroeder GN, Reynolds S, Kosta A, Collins JW, et al. Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun 2012;80(8):2780-2790. https://doi.org/10.1128/IAI.00510-12
- Moon EK, Kim MJ, Lee HA, Quan FS, Kong HH. Comparative analysis of differentially expressed genes in Acanthamoeba after ingestion of Legionella pneumophila and Escherichia coli. Exp Parasitol 2022;232:108188. https://doi.org/10.1016/j.exppara.2021.108188
- Lycett G. The role of Rab GTPases in cell wall metabolism. J Exp Bot 2008;59(15):4061-4074. https://doi.org/10.1093/jxb/ern255
- Barr FA. Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biol 2013;202(2):191-199. https://doi.org/10.1083/jcb.201306010
- Pamarthy S, Kulshrestha A, Katara GK, Beaman KD. The curious case of vacuolar ATPase: regulation of signaling pathways. Mol Cancer 2018;17(1):41. https://doi.org/10.1186/s12943-018-0811-3
- Moon EK, Hong Y, Chung DI, Kong HH. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol Biochem Parasitol 2012;185(2):121-126. https://doi.org/10.1016/j.molbiopara.2012.07.008
- Corbett Y, Parapini S, Perego F, Messina V, Delbue S, et al. Phagocytosis and activation of bone marrow-derived macrophages by Plasmodium falciparum gametocytes. Malar J 2021;20(1):81. https://doi.org/10.1186/s12936-021-03589-2