DOI QR코드

DOI QR Code

Analysis of Vegetation Structures and Vegetation-Environment Relationships of Medicinal on Short-term Income Forest Products, in Korea - Cudrania tricuspidata (Carrière) Bureau ex Lavallèe·Sorbus commixta Hedl.·Hovenia dulcis Thunb. -

임산물 약용수의 자생지 식생 구조와 환경과의 상관관계 분석 - 꾸지뽕나무·마가목·헛개나무 -

  • Hyoun-Sook Kim (Institute of Agricultural Science, Chungnam National Univ.) ;
  • Sang-Myong Lee (Institute of Agricultural Science, Chungnam National Univ.) ;
  • Kil-Nam Kang (Institute of Agricultural Science, Chungnam National Univ.) ;
  • Seog-Gu Son (Institute of Agricultural Science, Chungnam National Univ.) ;
  • Si-Chul Ryu (Chaemi Plant Research Institute) ;
  • Kyung-Joon Lee (Chaemi Plant Research Institute) ;
  • Jong-Hoon Lee (Chaemi Plant Research Institute) ;
  • Byung-Seol Lee (Chaemi Plant Research Institute) ;
  • Joong-Ku Lee (Dept. of Environmental & Forest Resources, Chungnam National Univ.)
  • 김현숙 (충남대학교 농업과학연구소) ;
  • 이상명 (충남대학교 농업과학연구소) ;
  • 강길남 (충남대학교 농업과학연구소) ;
  • 손석규 (충남대학교 농업과학연구소) ;
  • 류시철 ((주)채미식물연구소) ;
  • 이경준 ((주)채미식물연구소) ;
  • 이종훈 ((주)채미식물연구소) ;
  • 이병설 ((주)채미식물연구소) ;
  • 이중구 (충남대학교 산림환경자원학과)
  • Received : 2023.04.26
  • Accepted : 2023.09.26
  • Published : 2023.10.31

Abstract

In the present study, the vegetation was classified using the phytosociological method and canonical-correlation analysis (CCA) was implemented to analyze correlation between community structure and environmental factors in the natural habitats of forest byproducts, especially medicinal plants, such as Cudrania tricuspidata, Sorbus commixta, and Hovenia dulcis, in 2021-2022 to provide primary ecological data to establish environmental conditions for wild vegetable cultivation. A total of 11 plots in five regions, 8 plots in three regions, and 17 plots in 5 regions were selected for the natural habitats of C. tricuspidata in southern Korea, S. commixta in high mountains, and H. dulcis in valleys of central Korea, respectively. The importance value in each community was respectively analyzed as follows, in C. tricuspidata community, the importance value of C. tricuspidata (61.10) was the highest, followed by Celtis sinensis, Pinus thunbergii, Neolitsea aciculata, Styrax japonica, Carpinus coreana, Quercus serrata, and Q. acutissima. In Sorbus commixta community, Q. mongolica (57.21) was the highest, followed by, S. commixta (42.58), Betula ermani, Tilia amurensis, A. pseudosieboldianum, A. tschonoskii var. rubripes, Cornus controversa, Magnolia sieboldii, and Taxus cuspidata. In H. dulcis community, H. dulcis (64.58) was the highest, followed by Zelkova serrata, Cornus controversa, A. mono, Q. serrata, C. cordata, and Juglans mandshurica. As the result of the analysis on DBH of the major species having the high importance value, in C. tricuspidata community, C. tricuspidata, C. sinensis, Neolitsea aciculata, and C. coreana show the density of normal distribution, so the dominant status of these species is likely to continue. In S. commixta community, S. commixta show the density of reverse J-shaped curve, so the dominant status of these species is likely to be stable, and Q. mongolica, B. ermani and T. amurensis, show the density of normal distribution, so the dominant status of these species is likely to continue. In H. dulcis community, C. cordata, and J. mandshurica show the density of reverse J-shaped curve, so the dominant status of these species is likely to be stable, and H. dulcis, Z. serrata, C. controversa and A. mono had a formality distribution, suggesting a continuous domination of these species over the other species for the time being. The results of CCA ordination analysis using 11 environmental factors and 30 communities of three taxa classified by TWINSPAN analysis revealed that the altitude showed the strongest correlation with the vegetation. C. tricuspidata community was distributed on the moderate and gentle northeastern slope at low altitude with the highest pH, C.E.C, Ca2+, and Mg2 and various P2O5, whereas S. commixta community was distributed on the steep slope at high altitude with the highest O.M and T-N and lower P2O5, Ca2+, Mg2+, C.E.C and pH, which is the opposite tendency of the environment of C. tricuspidata community. H. dulcis community was distributed on the gentle northern slope at lower altitude with an average pH, O.M, T-N, Ca2+, Mg2+, and C.E.C, except higher P2O5.

본 연구는 단기소득임산물 중 산림임업통계자료에 의한 생산량과 수요가 증가하고 있는 추세인 약용수 (꾸지뽕나무, 마가목, 헛개나무) 자생지를 대상으로 식물사회학적 방법에 의해 군락을 구분하여 식생 구조를 파악하고 Ordination CCA에 의한 군락구조와 환경요인의 상관관계를 분석하여 산채류 재배지 환경조성에 필요한 생태학적 기초자료를 제공하기 위하여 2021~2022년에 수행되었다. 우리나라 꾸지뽕나무 자생지는 주로 남부지역에 분포하고 5개 지역, 11개 조사구를 대상으로 조사하였고, 마가목 자생지는 주로 고산지역에 분포하고 3개 지역, 8개 조사구를 대상으로 조사하였으며, 헛개나무 자생지는 중부 계곡부에 분포하고 5개 지역, 17개 조사구를 대상으로 조사하였다. 각 분류군의 중요치를 살펴보면, 꾸지뽕나무군락에서 나타난 중요치는 꾸지뽕나무가 61.10으로 가장 높았고 다음으로 팽나무, 곰솔, 새덕이, 때죽나무, 소사나무, 졸참나무, 상수리나무 등의 순으로 나타났고, 마가목군락에서는 신갈나무가 57.21로 가장 높았고 다음으로 마가목 42.58, 사스래나무, 피나무, 당단풍나무, 시닥나무, 층층나무, 함박꽃나무, 주목 등의 순으로 나타났으며, 헛개나무군락에서는 헛개나무가 64.58로 가장 높았고 다음으로 느티나무, 층층나무, 고로쇠나무, 졸참나무, 까치박달, 가래나무 등의 순으로 나타났다. 중요치가 높은 주요 분류군에 대한 흉고직경급을 분석한 결과 꾸지뽕나무군락에서는 꾸지뽕나무, 팽나무, 새덕이 및 소사나무는 어린 개체의 밀도를 높게 나타내고 있어 당분간은 이들 수종의 우점 상태가 계속 증가 될 것으로 보인다. 마가목군락에서 마가목은 역 J자형을 하고 있어 우점 상태가 계속 증가할 것으로 보이며, 신갈나무, 사스래나무 및 피나무는 정규분포형의 밀도를 나타내고 있어 당분간은 이들 수종의 우점 상태가 계속될 것으로 판단된다. 헛개나무군락에서는 까치박달과 가래나무는 역 J자형을 하고 있어 우점 상태가 계속 증가할 것으로 보이며, 헛개나무, 느티나무, 층층나무 및 고로쇠나무는 각 층에서 전체적으로 개체의 밀도가 높아 계속적으로 높은 우점도를 유지할 것으로 예상된다. TWINSPAN에 의해 분류된 3분류군의 30개 군락과 11개의 환경 요인으로 CCA ordination 결과, 해발고가 가장 높은 상관관계를 보였고, 꾸지뽕나무군락은 pH, C.E.C, Ca2+ 및 Mg2+ 는 가장 높고, 해발고는 낮고 남동사면과 남서사면의 경사는 완만하였으며, P2O5는 높은 지역과 낮은 지역에 골고루 분포하였다. 마가목군락은 해발고는 높고, 북사면의 경사는 다소 급하고, O.M과 T-N은 가장 많으나, 그 외 양료들은 적으며, pH는 낮게 나타났다. 헛개나무군락은 북동사면과 북서사면에서 해발고와 경사는 중간 지역이고, P2O5는 높게 나타났다.

Keywords

Acknowledgement

이 논문은 산림청(한국임업진흥원) 산림과학기술 연구개발사업'(FTIS 2021380B10-2323-BD0231482092640103)의 지원에 의하여 연구되었음.

References

  1. Anonymous(2022a) Korea national arboretum. Korean plant names index committee. Korea Forest Service (in Korean) 
  2. Anonymous(2022b) Statistical yearbook of forestry. Korea Forest Service. (in Korean) 
  3. Braun-Blanquet, J.(1964) Pflanzensoziologie. Grundzuge der vegetationskunde. Springer-Verlag, New York. (in German) 
  4. Brower, J.E. and J.H. Zar(1977) Field and laboratory methods for general ecology. Wm. C. Brown Company Publ., Iowa. 
  5. Cho, H.J. and M.S. Choi(2005) Vegetation composition and structure of Sorbus commixta-native forests in South Korea. Korean Journal of Agricultural and Forest Meteorology 7(3): 211-219. (in English abstract) 
  6. Chung, J.C., K.K. Jang, J.H. Choi, S.K. Jang and D.H. Oh(1997) An analysis of vegetation-environment relationship and forest community in Mt. Unjang by TWINSPAN and ORDINATION. Jour. Korean For. Soc. 86(4): 459-465. (in Korean with English abstract) 
  7. Curtis, J.T. and R.P. McIntosh(1951) An upland forest continuum in the prairie forest border region of Wisconsin. Ecology 32(3): 476-496.  https://doi.org/10.2307/1931725
  8. Dierssen, K.(1990) Einfuhrung in die pflanzensoziologie. Akademie-Verlag Berlin, 241pp. (in German) 
  9. Hill, M.O.(1979a) TWINSPAN-a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics, Cornell Univ., Ithaca, New York, 50pp. 
  10. Hill, M.O.(1979b) DECORANA-a FORTRAN Program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornell Univ., Ithaca, New York. 
  11. Kim, C.S. and J.G. Oh(1993) Phytosociological study on the vegetation of Mt. Mudeung. Korean J. Ecol. 16(1): 93-114. (in Korean with English abstract) 
  12. Kim, H.J., E.S. Doh, J.P. Chang, M.S. Choi, J.K. Yang, H.J. Cho, K.H. Bae, H.S. Shin, H.K. Park, S.H. Lee and C.W. Yun(2011) The flora of habitats kostributed with Allium victorialis var. platyphyllum populations in the south Korea. Kor. J. Env. Eco. 25(3): 284-294. (in Korean with English abstract) 
  13. Kim, H.S.(2010) A Study on ecological characteristic of forest vegetation in Deogyusan National Park, Korea. Ph.D. Dissertation, Chungnam National University. 
  14. Kim, H.S., S.M. Lee and J. Lee(2019) Analysis of vegetation-environment relationships in main wild vegetables on short-term income forest products, in Korea. Kor. J. Env. Eco. 33(4): 447-452. (in Korean with English abstract)  https://doi.org/10.13047/KJEE.2019.33.4.447
  15. Kimmins, J.P.(1987) Forest ecology. Macmillan, 531pp. 
  16. Lee, J., H.S. Kim, S.M. Lee and G.S. Park(2018) Analysis of vegetation and vegetation-environment relationships in main wild vegetables of Ulleungdo in Korea.-vegetation of herb layer of the Aster glehni, Allium ochotense, and Aruncus sylvester-. J. Korean Env. Res. Tech. 21(6): 71-82. (in Korean with English abstract) 
  17. Lee, S.C., H.M. Kang, S.H. Choi, S.G. Park and C.Y. Yu(2016) The change of vegetation structure by slope and altitude in Taebaeksan Provincial Park. Kor. J. Env. Eco. 30(3): 376-385. (in Korean with English abstract)  https://doi.org/10.13047/KJEE.2016.30.3.376
  18. Lee, T.B.(2003) Coloured flora of Korea. Vol. 1, 2. Seoul: Hyangmunsa. (in Korean) 
  19. Moon, H.S.(2001) Studies on the forest vegetation structure in subalpine zone of Mt. Deokyu National Park. J. Agriculture & Life Sciences 35: 47-54. (in Korean with English abstract) 
  20. Mueller-Dombois, D. and H. Ellenberg(1974) Aims and methods of vegetation ecology. John Wiley and Sons, New York, 547pp.
  21. Park, et al.(2000) Soil chemistry analysis. Rural Development Administration, 202pp. (in Korean) 
  22. Seo, B.S., S.C. Kim, K.W. Lee, C.M. Park and C.H. Lee(1995) A study on the structure of vegetation in Deokyusan National Park. Journal of the Korean Institute of Landscape Architecture 22(4): 177-185. (in Korean with English abstract) 
  23. Song, H.K., S.K. So, M.Y. Kim, J.M. Park S.H. Lee and G.S. Park(2007) Vegetation-environment relationships an analysis of vegetation-environment relationships in forest community of Ullung Island. Kor. J. Env. Eco. 21(1): 82-92. (in Korean with English abstract) 
  24. Song, J.S., D.S. Roh, W.S. Chung, S.D. Song, K. Ohno and Y. Mochida(1999) Phytosociological study of the forest vegetation in the mountainous areas of the northern partm, Kyungpook province using the methodology of physiognomy and numerical syntaxonomy. Korean J. Ecol. 22(5): 241-254. (in Korean with English abstract) 
  25. Ter Braak, C.J.F. and I.C. Prentice(1988) A theory of gradient analysis. Advances in Ecological Research 18: 271-317.  https://doi.org/10.1016/S0065-2504(08)60183-X
  26. Yu, J.E. and H.K. Song(1989) The analysis of vegetation-environment relationships of Mt. Sokri by TWINSPAN (Two-way indicator species analysis)and DCCA. Res. Rep. Env. Sci. Tech Chungnam Univ., Korea 7: 1-8. (in Korean with English abstract) 
  27. Yun, C.W., H.J. Kim, H.K. Park, H.S. Shin, S.H. Lee, E.S. Doh, J.P. Chang, M.S. Choi, J.K. Yang, K.H. Bae and H.J. Cho(2011) Forest stand structure and interspecific association in the habitats of Allium victorialis var. platyphyllum. Jour. Korean For. Soc. 100(4): 565-576. (in Korean with English abstract)