DOI QR코드

DOI QR Code

Utilizing Elastic Link Elements to Model Horizontal Connections in Precast Concrete Cores for Mid-rise Modular Buildings

중층 모듈러 건축물을 위한 PC 코어의 수평접합부에 대한 탄성연결 요소를 이용한 모델링 기법

  • Lee, Sang-Sup (Korea Institute of Civil Engineering and Building Technology)
  • Received : 2023.08.28
  • Accepted : 2023.10.24
  • Published : 2023.11.30

Abstract

This study presents an approach to model the horizontal connections of precast concrete (PC) panels as elastic link elements, utilizing PC cores as the lateral force-resisting system for a 15-story modular building. While in situ concrete (RC) cores are commonly used for lateral force resistance in mid- to high-rise modular buildings, the substantial onsite work requirements can reduce construction efficiency. To tackle this issue, there is ongoing research on using PC cores as an alternative solution, with instances of commercial use observed abroad. PC core components include 3D boxes and 2D panels, with limited use of 3D boxes due to their weight. When forming a core shear wall with 2D PC panels, both horizontal and vertical connections are typically needed for proper design. Unlike RC cores, PC cores lack a continuous concrete structure, resulting in reduced stiffness. To represent this stiffness reduction in commercial analysis programs, a reference stiffness simulating the behavior of monolithic walls has been established. This study also examined the seismic and wind performance of the 15-story modular building in light of stiffness reduction.

Keywords

Acknowledgement

이 연구는 2021년도 국토교통과학기술진흥원의 연구비 지원에 의한 결과의 일부임. 과제번호 21RERP-B08884-8

References

  1. Biondini, F., Dal Lago, B., & Toniolo, G. (2013). Role of Wall Panel Connections on the Seismic Performance of Precast Structures. Bulletin of Earthquake Engineering, 11, pp. 1061-1081. https://doi.org/10.1007/s10518-012-9418-z
  2. Carrion, J. E., Baker, W. F., & Besjak, C. (2019). Precast Core Wall System for High-Rise Buildings, IABSE Congress: The Evolving Metropolis, USA, pp. 110-116.
  3. Gunawardena, T., Ngo, T., Mendis. P., & Alfano, J. (2016). Innovative Flexible Structural System Using Prefabricated Modules, Journal of Architectural Engineering, 22(4), pp. 1-7.
  4. Hemamathi, L., & Jaya, K. P. (2021). Behaviour of Precast Column Foundation Connection under Reverse Cyclic Loading, Advances in Civil Engineering, 6677007, pp. 1-17. https://doi.org/10.1155/2021/6677007
  5. Kim, M. J. (2023). Proposal of PC Core System for Modular Housing, Journal of Land, Housing, and Urban Affairs, 14(1), pp. 115-122.
  6. Kim, S. K., Seo, S. Y., Kim, S. H., Lim, B. H., & Cha, J. W. (2019). Hysteretic Characteristic of Precast Concrete Wall with Box Type Connector for Vertical Bars under Horizontal Load, Journal of the Korea Concrete Institute, 31(2), pp. 153-163. https://doi.org/10.4334/JKCI.2019.31.2.153
  7. Lee, S. S., Hong, S. Y., & Bae, K. W. (2020). Hysteretic Behavior of Horizontal Connections in Precast Concrete Shear Wall, Journal of the Architectural Institute of Korea, 36(7), pp. 122-162.
  8. Lee, S. S. (2021). Structural Performance of Horizontal Connection using Threaded Rebar for Precast Concrete Wall Panels, Journal of the Architectural Institute of Korea, 37(7), pp. 175-182. https://doi.org/10.5659/JAIK.2021.37.7.175
  9. Lee, S. S. (2022). Structural Behavior of Precast Concrete Wall Panels with Horizontal Connection using Threaded Rebar, Journal of the Architectural Institute of Korea, 38(5), pp. 215-222. https://doi.org/10.5659/JAIK.2022.38.5.215
  10. Pan, W., & Wang, Z. (2023). Precast Concrete Coupled Shear Wall System of Modular High-rises Without In Situ Cores, Structural Engineering International, 33(1), pp. 128-140. https://doi.org/10.1080/10168664.2021.2004974
  11. Park, J. Y., Park, Y. S., & Jeon, H. S. (2022). A Study on the Mock-up Test of the Core-Part Using Precast Concrete Walls, Proceedings of the Korea Concrete Institute, 34(2), pp. 681-682. https://doi.org/10.4334/JKCI.2022.34.6.681
  12. Rossley, N., Aziz, F. N. A. A., Chew, H. C., & Farzadnia, N. (2014). Behaviour of Vertical Loop Bar Connection in Precast Wall Subjected To Shear Load, Australian Journal of Basic and Applied Sciences, 8(1), pp. 370-380.
  13. Seo, S. Y., Kim, S. H., Cha, J. W., & Lim, B. H. (2020). Seismic Capacity of Precast Concrete Wall Corresponding to Connection Detail of Vertical Bars at Horizontal Joint, Journal of the Korea Concrete Institute, 32(6), pp. 541-551. https://doi.org/10.4334/JKCI.2020.32.6.541
  14. Shan, S., & Pan, W. (2020). Structural design of high-rise buildings using steel-framed modules: A case study in Hong Kong, The Structural Design of Tall and Special Buildings, 29(15), pp. 1-20.
  15. Styles A. J., Luo, F.J., Bai, Y., & Murray-Parkes, J. B. (2016). Effect of joint rotational stiffness on structural responses of multi-story modular buildings. Proceedings of the International Conference on Smart Infrastructure and Construction, pp. 457-462.
  16. Sun, J., Qiu, H., & Jiang, H. (2019). Lateral Load Behaviour of a Rectangular Precast Shear Wall Involving Vertical Bolted Connections, Advances in Structural Engineering, 22(5), pp. 211-1224.
  17. Wang, Z., Pan, W., & Zhang, Z. (2020). High-rise Modular Buildings with Innovative Precast Concrete Shear Walls as a Lateral Force Resisting System, Structures, 26, pp. 39-53. https://doi.org/10.1016/j.istruc.2020.04.006