DOI QR코드

DOI QR Code

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Moonkyung Chung (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT))
  • Received : 2022.04.06
  • Accepted : 2023.11.06
  • Published : 2023.11.25

Abstract

An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

Keywords

Acknowledgement

This research was supported by a grant from the project "Development of Smart Complex Solution for Large-Deep Underground Space Using Artificial Intelligence (20230105-001)", which was funded by the Korea Institute of Civil Engineering and Building Technology.

References

  1. Ardalan, H., Eslami, A. and Nariman-Zadeh, N. (2009), "Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms", Comput. Geotech., 36(4), 616-625. https://doi.org/10.1016/j.compgeo.2008.09.003.
  2. ASTM C471 (1991), Standard Test Methods for Chemical Analysis of Gypsum and Gypsum Products, ASTM International; West Conshohocken, PA, USA.
  3. ASTM D2166 / D2166M-16 (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International; West Conshohocken, PA, USA.
  4. ASTM D2487 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International; West Conshohocken, PA, USA.
  5. ASTM D3148-96 (2002), Standard Test Method for Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression, ASTM International; West Conshohocken, PA, USA.
  6. Chapman, D.N., Ahn, S.K., Hunt, D.V.L. and Chan, A.H.C. (2006), "The use of model tests to investigate the ground displacements associated with multiple tunnel construction in soil", Tunn. Undergr. Sp. Tech., 21(3), 413. https://doi.org/10.1016/j.tust.2005.12.059.
  7. Chen, S., Wang, H., Zhang, J., Xing, H. and Wang, H. (2015), "Experimental study on low-strength similar-material proportioning and properties for coal mining", Adv. Mater. Sci. Eng., 24(5), 457-470. https://doi.org/10.1155/2015/696501.
  8. Chung, J., Moon, I. and Yoo, C. (2013), "Behaviour characteristics of tunnel in the cavity ground by using scale model tests", J. Kor. Geoenviron. Soc., 14(12), 61-69. http://dx.doi.org/10.14481/jkges.2013.14.12.061.
  9. Coquard, P. and Boistelle, R. (1994), "Water and solvent effects on the strength of set plaster", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(5), 517-524. https://doi.org/10.1016/0148-9062(94)90153-8.
  10. Conley, R.F. and Bundy, W.M. (1958), "Mechanism of gypsification", Geochimica et Cosmochimica Acta., 15(1-2), 57-72. https://doi.org/10.1016/0016-7037(58)90010-3.
  11. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
  12. Dong, J.Y., Yang, J.H., Yang, G.X., Wu, F.Q. and Liu, H.S. (2012), "Research on similar material proportioning test of model test based on orthogonal design", J. China Coal Soc., 37(1), 44-49.
  13. Goodman, R.E., Heuz, F.E. and Bureau, G.J. (1972), "On modelling techniques for the study of tunnels in jointed rock", Proceedings of the 14th US Symp. Rock Mech. OnePetro. University Park, U.S.A., June. https://doi.org/10.1016/0148-9062(74)90327-1.
  14. Harris, H.G. and Sabnis, G. (1999), Structural Modeling and Experimental Techniques, 2nd Ed., CRC press.
  15. He, M.C., Gong, W.L., Zhai, H.M. and Zhang, H.P. (2010), "Physical modeling of deep ground excavation in geologically horizontal strata based on infrared thermography", Tunn. Undergr. Sp. Tech.. 25(4), 366-376. https://doi.org/10.1016/j.tust.2010.01.012.
  16. Hobbs, D.W. (1968), "Scale model study of strata movement around mine roadways: I. the dependence of roadway closure upon rock strength", Int. J. Rock Mech. Min. Sci., 5(3), 225-235. https://doi.org/10.1016/0148-9062(68)90010-7.
  17. Horsrud, P. (2001), "Estimating mechanical properties of shale from empirical correlations", SPE Drill.Complet., 16(2), 68-73 https://doi.org/10.2118/56017-PA.
  18. Huang, F., Zhu, H., Xu, Q., Cai, Y. and Zhuang, X. (2013), "The effect of weak interlayer on the failure pattern of rock mass around tunnel-Scaled model tests and numerical analysis", Tunn. Undergr. Sp. Tech., 35, 207-218. http://dx.doi.org/10.1016/j.tust.2012.06.014.
  19. Indraratna, B. (1990), "Development and applications of a synthetic material to simulate soft sedimentary rocks", Geotechnique, 40(2), 189-200. https://doi.org/10.1680/geot.1990.40.2.189.
  20. Indraratna, B., Haque, A. and Aziz, N. (1998), "Laboratory modelling of shear behaviour of soft joints under constant normal stiffness conditions", Geotech. Geol. Eng., 16(1), 17-44. https://doi.org/10.1023/A:1008880112926
  21. Jamali, A., Nariman-zadeh, N., Darvizeh, A., Ma- soumi, A. and Hamrang, S. (2008), "Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process", Eng. Appl. Artifi. Int., 22(4-5), 676-687. https://doi.org/10.1016/j.engappai.2008.11.005.
  22. Jeon, S., Kim, J., Seo, Y. and Hong, C. (2004), "Effect of a fault and weak plane on the stability of a tunnel in rock - a scaled model test and numerical analysis", Int. J. Rock Mech. Min. Sci., 41(3), 658-663. https://doi.org/10.1016/j.ijrmms.2004.03.115.
  23. Jiang, Y.J., Xiao, J., Tanabashi, Y. and Mizokami, T. (2004), "Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition", Int. J. Rock. Mech. Min. Sci., 41(2), 275-286. https://doi.org/10.1016%2Fj.ijrmms.2003.08.004. https://doi.org/10.1016%2Fj.ijrmms.2003.08.004
  24. Johnston, I.W. and Choi, S.K. (1986), "A synthetic soft rock for laboratory model studies", Geotechnique, 36(2), 251-263. https://doi.org/10.1680/geot.1986.36.2.251.
  25. Jung, H.R. and Kim, J.W. (2006), "Deformation behaviors around tunnel in anisotropic rocks considering joint orientation and rock pressure condition using scaled model tests", Tunn. Undergr. Sp., 16(4), 313-325.
  26. Karni, J. (1970), "Sand for gypsum-sand plaster", Materiaux et Construction, 3(4), 261-268. https://doi.org/10.1007/BF02474014.
  27. Kalantary, F., Ardalan, H. and Nariman-Zadeh, N. (2009), "An investigation on the Su-NSPT correlation using GMDH type neural networks and genetic algorithms", Eng. Geol., 104(1-2), 144-155. https://doi.org/10.1016/j.enggeo.2008.09.006.
  28. Kim, P.G. and Kim, J.W. (2013), "Scale model studies for stability estimation of twin tunnels with small clearance", Tunn. Undergr. Sp., 23(2), 130-140. https://doi.org/10.7474/TUS.2013.23.2.130.
  29. Kim, S.H., Burd, H.J. and Milligan, G.W.E. (1998), "Model testing of closely spaced tunnels in clay", Geotechnique, 48(3), 375-388. https://doi.org/10.1680/geot.1998.48.3.375.
  30. Kordnaeij, A., Kalantary, F., Kordtabar, B. and Mola-Abasi, H. (2015), "Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties", Soils Found., 55(6), 1335-1345. https://doi.org/10.1016/j.sandf.2015.10.001.
  31. Kumar R., Bhargava, K. and Choudhury, D. (2017), "Correlations of uniaxial compressive strength of rock mass with conventional strength properties through random number generation", Int. J. Geomech., 17(2), 06016021. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000716
  32. Lemaitre, J. (1985), "A continuous damage mechanics model for ductile fracture", J. Eng. Mater. Technol., 107(1), 83-89. https://doi.org/10.1115/1.3225775.
  33. Lee, J. and Jeong, S. (2016), "Experimental study of estimating the subgrade reaction modulus on jointed rock foundations", Rock Mech. Rock Eng., 49(6), 2055-2064. https://doi.org10.1007/s00603-015-0905-9.
  34. Liu, J., Feng, X.T., Ding, X.L., Zhang, J. and Yue, D.M. (2003), "Stability assessment of the three-gorges dam foundation, China, using physical and numerical modeling, part I: Physical model tests", Int. J. Rock Mech. Min. Sci., 40(5), 609-631. https://doi.org/10.1016/S1365-1609(03)00055-8.
  35. Ma, F.P., Li, Z.K. and Luo, G.F. (2004), "NIOS model material and its use in geo-mechanical similarity model test", J. Hydroelectr. Eng., 23(1), 48-51.
  36. Manzella, I. and Labiouse, V. (2008), "Qualitative analysis of rock avalanches propagation by means of physical modeling of non-constrained gravel flows", Rock Mech. Rock Eng., 41(1), 133-151. https://doi.org/10.1007/s00603-007-0134-y.
  37. Min, T.K. and Huy, P.T. (2010), "A soil-water hysteresis model for unsaturated sands based on fuzzy set plasticity theory", KSCE J. Civil Eng., 14(2), 165-172. https://doi.org/10.1007/s12205-010-0165-x.
  38. Mola-Abasi, H., Dikmen, U. and Shooshpasha, I. (2015), "Prediction of shear-wave velocity from CPT data at Eskisehir (Turkey), using a polynomial model", Near Surface Geophy., 13(2), 155-168. https://doi.org/10.3997/1873-0604.2015010.
  39. Park, L.K., Suneel, M. and Chul, I.J. (2008), "Shear strength of Jumunjin sand according to relative density", Mar. Georesour. Geotec., 26(2), 101-110. https://doi.org/10.1080/10641190802022445.
  40. Sachpazis, C.I. (1990), "Correlating Schmidt hardness with compressive strength and Young's modulus carbonate rocks", Bull. Int. Assoc. Eng. Geol., 42(1), 75-83. https://doi.org/10.1007/BF02592622
  41. Seo, S., Lim, H. and Chung, M. (2021), "Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing", Geomech. Eng., 24(5), 457-470. https://doi.org/10.12989/gae.2021.24.5.457.
  42. Seol, H., Jeong, S., Cho, C. and You, K. (2008), "Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI)", Int. J. Rock Mech. Min. Sci., 45(6), 848-861. https://doi.org/10.1016/j.ijrmms.2007.09.008.
  43. Sterpi, D. and Cividini, A. (2004), "A physical and numerical investigation on the stability of shallow tunnels in strain softening media", Rock Mech. Rock Eng., 37(4), 277-298. https://doi.org/10.1007/s00603-003-0021-0.
  44. Stimpson, B. (1970), "Modelling materials for engineering rock mechanics", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 7(1), 77-121. https://doi.org/10.1016/0148-9062(70)90029-X.
  45. Vu-Bac, N., Lahmer, T., Zhang, Y., Zhuang, X. and Rabczuk T. (2014), "Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)", Compos. Part B, Col. Eng., 59, 80-95. https://doi.org/10.1016/j.compositesb.2013.11.014.
  46. Yang Y. and Zhang Q. (1997), "A hierarchical analysis for rock engineering using artificial neural networks", Rock Mech. Rock Eng., 30(4), 207-222. https://doi.org/10.1007/BF01045717.
  47. Yang, Z.Y. and Chiang, D.Y. (2000), "An experimental study on the progressive shear behavior of rock joints with tooth-shaped asperities", Int. J. Rock Mech. Min. Sci., 37(8), 1247-1259. http://dx.doi.org/10.1016/S1365-1609(00)00055-1.
  48. Zhang, Q.Y., Li, S.C., Guo, X.H., Li, Y. and Wang, H.P. (2008), "Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application", Rock Soil Mech., 29(8), 2126-2130.