DOI QR코드

DOI QR Code

Analysis of stability control and the adapted ways for building tunnel anchors and a down-passing tunnel

  • Xiaohan Zhou (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University) ;
  • Xinrong Liu (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University) ;
  • Yu Xiao (Chongqing City Infrastructure Construction LTD) ;
  • Ninghui Liang (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University) ;
  • Yangyang Yang (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University) ;
  • Yafeng Han (Chongqing Jiaotong University) ;
  • Zhongping Yang (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University)
  • Received : 2023.07.09
  • Accepted : 2023.11.01
  • Published : 2023.11.25

Abstract

Long-span suspension bridges have tunnel anchor systems to maintain stable cables. More investigations are required to determine how closely tunnel excavation beneath the tunnel anchor impacts the stability of the tunnel anchor. In order to investigate the impact of the adjacent tunnel's excavation on the stability of the tunnel anchor, a large-span suspension bridge tunnel anchor is utilised as an example in a three-dimensional numerical simulation approach. In order to explore the deformation control mechanism, orthogonal tests are employed to pinpoint the major impacting elements. The construction of an advanced pipe shed, strengthening the primary support. Moreover, according to the findings the grouting reinforcement of the surrounding rock, have a significant control effect on the settlement of the tunnel vault and plug body. However, reducing the lag distance of the secondary lining does not have such big influence. The greatest way to control tunnel vault settling is to use the grout reinforcement, which increases the bearing capacity and strength of the surrounding rock. This greatly minimizes the size of the tunnel excavation disturbance area. Advanced pipe shed can not only increase the surrounding rock's bearing capacity at the pipe shed, but can also prevent the tunnel vault from connecting with the disturbance area at the bottom of the anchorage tunnel, reduce the range of shear failure area outside the anchorage tunnel, and have the best impact on the plug body's settlement control.

Keywords

Acknowledgement

The study is supported by National Natural Science Foundation of China (Grant No. 41772319, 41972266) and Graduate Scientific Research and Innovation Foundation of Chongqing, China (Grant No. CYB20031). The authors gratefully acknowledge these supports.

References

  1. Ding, P., Shi, C., Tao, L.J., Liu, Z.G. and Zhang, T. (2023), "Research on seismic analysis methods of large and complex underground pipe structures in hard rock sites", Tunn. Undergr. Sp. Tech. Incorporat. Trenchless Tech. Res., 135. https://doi.org/10.1016/J.TUST.2023.105035.
  2. Ding, P., Tao, L.J., Yang, X.R., Zhao, J. and Shi, C. (2019), "Three-dimensional dynamic response analysis of a single-ring structure in a prefabricated subway station", Sustain. Cities Soc., 45. https://doi.org/10.1016/j.scs.2018.11.010.
  3. Ding, Z., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/12989/gae.2017.12.2.185. https://doi.org/10.12989/gae.2017.12.2.185
  4. Dong, Q., Wan, H.Y., Kong, F.L. and Zhao, B.Y. (2012), "The 3D numerical simulation and settlement control study for city tunnel crossing high fill geological area of gravelly soils", Appl. Mech. Mater., 1235-1242. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.256-259.1235.
  5. Gong, J.W., Wang, X. and Sheng, H. (2015), "Numerical analysis on influence of underground space construction on adjacent tunnel", International Conference on Advances in Energy, Environment and Chemical Engineering, Atlantis Press, 592-595. https://doi.org/10.2991/AEECE-15.2015.118.
  6. Gong, L., Yu, J.W., Sun, X.F., Zhang, Z.X. and Wu, J.L. (2020), "Study on the optimization of the approaching construction of the four-hole large-section municipal tunnels crossing railway tunnel", Research Report No.741; IOP Conference Series: Materials Science and Engineering.
  7. Guo, H.F., Yao, A.J., Zhang, J.T., Zhou, Y.J. and Guo, Y.F. (2018), "Impact of high-rise buildings construction process on adjacent tunnels", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/5804051.
  8. Han, Y.F., Liu, X.R., Li, D.L., Tu, Y.L., Deng, Z.Y., Liu, D.S. and Wu, X.C. (2020), "Model test on the bearing behaviors of the tunnel-type anchorage in soft rock with underlying weak interlayers", Bull. Eng. Geol. Environ., 79, 1023-1040. https://doi.org/10.1007/s10064-019-01564-5.
  9. Jiang, N., Wang, D., Feng, J., Zhang, S.L. and Huang, L. (2021), "Bearing mechanism of a tunnel-type anchorage in a railway suspension bridge", J. Mountain Sci., 18(8), 2143-2158. https://doi.org/10.1007/S11629-020-6162-8.
  10. Jin, D.L., Yuan, D.J., Li, X.G. and Zheng, H.T. (2018), "An in-tunnel grouting protection method for excavating twin tunnels beneath an existing tunnel", Tunn. Undergr. Sp. Tech., 71, 27-35. https://doi.org/10.1016/j.tust.2017.08.002.
  11. Li, J.J., Bai, H.R. and Li, J.K. (2013), "Analysis and control the surface settlement of tunnel excavation", Appl. Mech. Mater., 939-942. https://doi.org/10.4028/www.scientific.net/AMM.438-439.939.
  12. Li, L.D., Liu, D.K., Zhen, Y.H. and Liu, Z.X. (2019), "Force and deformation mechanism of great pipe shed advanced support in subway tunnel", Research Report No.330; IOP Conference Series: Earth and Environmental Science.
  13. Li, P.N., Dai, Z.Y., Huang, D.Z., Cai, W.J. and Fang, T. (2021), "Impact analysis for safety prevention and control of special-shaped shield construction closely crossing multiple operational metro tunnels in shallow overburden", Geotech. Geol. Eng., 40(4). https://doi.org/10.1007/S10706-021-02016-2.
  14. Li, X.H., Qiao, G.L. and Guan, J.W. (2022), "DLSM simulation analysis of the influence of blasting construction on adjacent tunnels in rock mass with discontinuities", Adv. Civil Engg., 2022. https://doi.org/10.1155/2022/2214008.
  15. Li, Y.J., Luo, R., Zhang, Q.H., Xiao, G.Q., Zhou, L.M. and Zhang, Y.T. (2017), "Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage", Geomech. Eng., 12(1), 139-160. https://doi.org/10.12989/gae.2017.12.1.139.
  16. Liu, B., Zhang, D.W., Liu, S.Y. and Qin, Y.J. (2017), "Numerical simulation and field monitoring on a large cross-section pipe-jacking underpass traversing existing metro tunnels", Chinese J. Rock Mech. Eng., 36(11), 2850-2860. https://doi.org/10.13722/j.cnki.jrme.2017.1214.
  17. Liu, X.R., Han, Y.F., Li, D.L., Tu, Y.L., Deng, Z.Y., Yu, C.T. and Wu, X.C. (2019), "Anti-pull mechanisms and weak interlayer parameter sensitivity analysis of tunnel-type anchorages in soft rock with underlying weak interlayers", Eng. Geol., 253, 123-136. https://doi.org/10.1016/j.enggeo.2019.03.012.
  18. Liu, X.R., Han, Y.F., Yu, C.T., Xiong, F., Zhou, X.H. and Deng, Z.Y. (2020), "Reliability assessment on stability of tunnel-type anchorages", Comput. Geotech., 125, 103-661. https://doi.org/10.1016/j.compgeo.2020.103661.
  19. Liu, X.R., Zhuang, Y., Zhou, X.H., Li, C., Lin, B.B., Liang, N.H., Zhong, Z.L. and Deng, Z.Y. (2023), "Numerical study of the mechanical process of long-distance replacement of the definitive lining in severely damaged highway tunnels", Undergr. Sp., 9. https://doi.org/10.1016/J.UNDSP.2022.07.007.
  20. Lu, JF., Jia, Y.Y. and Liu, B.X. (2012), "Impact of orthogonal undercrossing newly-built tunnel adjacent construction on the safety of existing municipal tunnel", Disaster Advances., 5(4), 756-761.
  21. Ng, C.W.W., Lee, K.M. and Tang, D.K.W. (2004), "Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions", Can. Geotech. J., 41(3), 523-539. https://doi.org/10.1139/t04-008.
  22. Seo S., Lim H. and Chung M. (2021), "Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing", Geomech. Eng., 24(5), 457-470. https://doi.org/10.12989/gae.2021.24.5.457.
  23. Shahin, H.M., Nakai, T., Ishii, K., Iwata, T. and Kuroi, S. (2016), "Investigation of influence of tunneling on existing building and tunnel: model tests and numerical simulations", Acta Geotechnica., 11, 679-692. https://doi.org/10.1007/s11440-015-0428-2.
  24. Shen, Z.J., Jia, J.H., Jiang, N., Zhu, B. and Sun, W.C. (2022), "Field-scale experiment on deformation characteristics and bearing capacity of tunnel-type anchorage of suspension bridge", Energies., 15(13), 4772. https://doi.org/10.3390/EN15134772.
  25. Shi, C., Tao, L.J., Ding, P., Wang, Z.G. and Jia, Z.B. (2023), "Study on seismic response characteristics and failure mechanism of giant-span flat cavern", Tunn. Undergr. Sp. Tech. Incorporat. Trenchless Tech. Res., 140. https://doi.org/10.1016/J.TUST.2023.105328.
  26. Tao, L.J., Ding, P., Lin, H., Wang, H.l., Kou, W.f. and Shi, C. (2021), "Three-dimensional seismic performance analysis of large and complex underground pipe trench structure", Soil Dynam. Earthq. Eng., 150. https://doi.org/10.1016/J.SOILDYN.2021.106904.
  27. Tao, L.J., Ding, P., Shi, C., Wu, X.W., Wu, S. and Li, S.C. (2019), "Shaking table test on seismic response characteristics of prefabricated subway station structure", Tunn. Undergr. Sp. Tech. Incorporat. Trenchless Tech. Res., https://doi.org/10.1016/j.tust.2019.102994.
  28. Tao, L.J., Ding, P., Yang, X.R., Ling, P., Shi, C., Bao, Y., Wei, P.C. and Zhao, J. (2020), "Comparative study of the seismic performance of prefabricated and cast-in-place subway station structures by shaking table test", Tunn. Undergr. Sp. Tech. Incorporat. Trenchless Tech. Res., https://doi.org/10.1016/j.tust.2020.103583.
  29. Wang J.X., Cao A.S., Wu Z., Sun ZP., Lin X., Sun L., Liu X.T., Li H.B.Q. and Sun Y.W. (2022), "Numerical simulation on the response of adjacent underground pipelines to super shallow buried large span double-arch tunnel excavation", Applied Sciences., 12(2), 621. https://doi.org/10.3390/APP12020621.
  30. Wang, T., Wang, L. and Li ,C.N. (2013), "The influence of bridge construction and operation on adjacent Nanjing Yangtze River Tunnels", Adv. Mater. Res., 1018-1023. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.838-841.1018.
  31. Wang, X.L., Li, R.W., Liu, Z.W., Jiang, D.P. and Ji, Z.G. (2022), "Comprehensive evaluation of the reinforcement effect of grouting in broken surrounding rock in deep roadways", Geotech. Geol. Eng., 1-12. https://doi.org/10.1007/S10706-021-02037-X.
  32. Xiong, X.R., Tang, H., Liao, M.J., Yin, X.T. and Wang, D.Y. (2018), "Laboratory model test on "wedge-effect" of pullout capacity of tunnel-type anchorage", Rock Soil Mech., 39, 181-190. https://doi.org/10.16285/j.rsm.2018.0405.
  33. Yoo, C. and Cui, S.S. (2020), "Effect of new tunnel construction on structural performance of existing tunnel lining", Geomech. Eng., 22(6), 497-507. https://doi.org/10.12989/gae.2020.22.6.497.
  34. Yu, X.F., Zheng, Y.R., Liu, H.H. and Fang, Z.C. (1983), "Stability analysis of surrounding rock of underground engineering", Beijing: China Coal., 1983. (in Chinese).
  35. Yuan, C.F., Yu, H.J., Yuan, Z.J. and Wang, Y.T. (2019), "Numerical simulation of impact caused by construction of high-rise building upon adjacent tunnels", Geotech. Geol. Eng., 37, 3171-3181. https://doi.org/10.1007/s10706-019-00834-z.
  36. Zhang, Q.H., Li, Y.J., Yu, M.W., Hu, H.H. and Hu, J.H. (2015), "Study of the rock foundation stability of the Aizhai suspension bridge over a deep canyon area in China", Eng. Geol., 198, 65-77. https://doi.org/10.1016/j.enggeo.2015.09.012.
  37. Zhou, Z., Chen, Y., Liu, Z.Z. and Miao, L.W. (2020), "Theoretical prediction model for deformations caused by construction of new tunnels undercrossing existing tunnels based on the equivalent layered method", Comput. Geotech., 123, 103565. https://doi.org/10.1016/j.compgeo.2020.103565.
  38. Zhou, Z., Gao, W.Y., Liu, Z.Z. and, Zhang C.C. (2019), "Influence zone division and risk assessment of underwater tunnel adjacent constructions", Math. Probl. Eng., 2019. https://doi.org/10.1155/2019/1269064.
  39. Zhuang, Y., Liu, X.R., Zhou, X.H. and Du, L.B. (2022), "Diffusion model of sulfate ions in concrete based on pore change of cement mortar and its application in mesoscopic numerical simulation", Struct. Concrete., 23(6). https://doi.org/10.1002/SUCO.202100760.