References
- Ahlawat, N. and Lal, R. (2016), "Buckling and vibrations of multidirectional functionally graded circular plate resting on elastic foundation", Proc. Eng., 144, 85-93. https://doi.org/10.1016/j.proeng.2016.05.010.
- Al Rjoub, Y.S. and Alshatnawi, J.A. (2020), "Free vibration of functionally-graded porous cracked plates", In Struct., 28, 2392-2403. https://doi.org/10.1016/j.istruc.2020.10.059.
- Bansal, G., Gupta, A. and Katiyar, V. (2020), "Vibration of porous functionally graded plates with geometric discontinuities and partial supports", Proc. of the Instit. of Mech. Enginrs., Part C: J. of Mech. Engg. Sci., 234(21), 4149-4170. https://doi.org/10.1177/0954406220920660.
- Bathini, S.R. (2020), "Free vibration behavior of bi-directional functionally graded plates with porosities using a refined first order shear deformation theory", J. Comput. Appl. Mech., 51(2), 374-388. https://doi.org/10.22059/JCAMECH.2020.303046.510.
- Chen, M., Jin, G., Ma, X., Zhang, Y., Ye, T. and Liu, Z. (2018), "Vibration analysis for sector cylindrical shells with bidirectional functionally graded materials and elastically restrained edges", Compos. Part B: Eng., 153, 346-363. https://doi.org/10.1016/j.compositesb.2018.08.129.
- Cuong-Le, T., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2021), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotech., 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Ebrahimi, M.J. and Najafizadeh, M.M. (2014), "Free vibration analysis of two-dimensional functionally graded cylindrical shells", Appl. Math. Model., 38(1), 308-324. https://doi.org/10.1016/j.apm.2013.06.015.
- Esmaeilzadeh, M. and Kadkhodayan, M. (2019), "Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping", Aerosp. Sci. Tech., 93,105333. https://doi.org/10.1016/j.ast.2019.105333.
- Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
- Ghatage, P.S. and Sudhagar, P.E. (2023), "Free vibrational behavior of bi-Directional functionally graded composite panel with and without porosities using 3D finite element approximations", Int. J. Integra. Eng., 15(1), 131-144. https://doi.org/10.30880/ijie.2023.15.01.012.
- Ghatage, P.S. and Sudhagar, P.E. (2023), "Free vibrational behavior of bi-directional perfect and imperfect axially graded cylindrical shell panel under thermal environment", Struct. Eng. Mecha., 85(1), 135. https://doi.org/10.12989/sem.2023.85.1.135..
- Hadji, L., Bernard, F., Safa, A. and Tounsi, A. (2021), "Bending and free vibration analysis for FGM plates containing various distribution shape of porosity", Adv. Mater. Res., 10(2), 115-135. https://doi.org/10.12989/amr.2021.10.2.115.
- Hosseini-Hashemi, S., Salehipour, H., Atashipour, S.R. and Sburlati, R. (2013), "On the exact in-plane and out-of-plane free vibration analysis of thick functionally graded rectangular plates: Explicit 3-D elasticity solutions", Compos. Part B: Eng., 46, 108-115. https://doi.org/10.1016/j.compositesb.2012.10.008.
- Kang, R., Xin, F., Shen, C. and Lu, T.J. (2022), "3D free vibration analysis of functionally graded plates with arbitrary boundary conditions in thermal environment", Adv. Eng. Materi., 24(5), 2100636. https://doi.org/10.1002/adem.202100636.
- Kar, V.R. and Panda, S.K. (2015a), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Sol. Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691.
- Kar, V.R. and Panda, S.K. (2015b), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006.
- Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chine. J. Aeron., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007
- Keddouri, A., Hadji, L. and Tounsi, A. (2019), "Static analysis of functionally graded sandwich plates with porosities", Adv. Mater. Res., 8(3), 155-177. https://doi.org/10.12989/amr.2019.8.3.155.
- Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. with Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
- Li, S., Zheng, S. and Chen, D> (2020), "Porosity dependent isogeometric analysis of bi-directional functionally graded plates", Thin-Walled Struct., 156, 106999. https://doi.org/10.1016/j.tws.2020.106999.
- Lieu, Q.X., Lee, D., Kang, J. and Lee, J. (2019), "NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates", Mech. Adv. Mater. Struct., 26(12), 1064-1080. https://doi.org/10.1080/15376494.2018.1430273.
- Lieu, Q.X., Lee, S., Kang, J. and Lee, J. (2018), "Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis", Compos. Struct., 192, 434-451. https://doi.org/10.1016/j.compstruct.2018.03.021.
- Mehrabadi, S.J. and Aragh, B.S. (2013), "On the thermal analysis of 2-D temperature-dependent functionally graded open cylindrical shells", Compos. Struct., 96, 773-785. https://doi.org/10.1016/j.compstruct.2012.09.036.
- Molla-Alipour, M., Shariyat, M. and Shaban, M. (2020), "Free vibration analysis of bidirectional functionally graded conical/cylindrical shells and annular plates on nonlinear elastic foundations, based on a unified differential transform analytical formulation", J. Solid Mech., 12(2), 385-400. https://doi.org/10.22034/JSM.2019.1869981.1450.
- Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solids Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017.
- Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound Vib., 318(1-2), 176-92. https://doi.org/10.1016/j.jsv.2008.03.056.
- Punera, D. and Kant, T. (2017), "Free vibration of functionally graded open cylindrical shells based on several refined higher order displacement models", Thin-Walled Struct., 119, 707-726. https://doi.org/10.1016/j.tws.2017.07.016.
- Ramteke, P.M., Panda, S.K. and Nitin, S> (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
- Ramteke, P.M. and Panda, S.K. (2021), "Free vibrational behaviour of multi-directional porous functionally graded structures", Arab. J. Sci. Eng., 46(8), 7741-7756. https://doi.org/10.1007/s13369-021-05461-6.
- Ramteke, P.M., Panda, S.K. and Patel, B. (2022), "Nonlinear eigenfrequency characteristics of multi-directional functionally graded porous panels", Compos. Struct., 279, 114707. https://doi.org/10.1016/j.compstruct.2021.114707.
- Sah, S.K. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
- Salehipour, H., Nahvi, H. and Shahidi, A.R. (2015), "Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories", Compos. Struct., 124, 283-291. https://doi.org/10.1016/j.compstruct.2015.01.015.
- Salehipour, H. and Shahsavar, A. (2018), "A three-dimensional elasticity model for free vibration analysis of functionally graded micro/nano plates: Modified strain gradient theory", Compos. Struct., 206, 415-424. https://doi.org/10.1016/j.compstruct.2018.08.033.
- Salehipour, H., Shahsavar, A. and Civalek, O. (2019), "Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges", Compos. Struct., 221, 110842. https://doi.org/10.1016/j.compstruct.2019.04.014.
- Salehipour, H., Shahgholian-Ghahfarokhi, D., Shahsavar, A., Civalek, O. and Edalati, M. (2022), "Static deflection and free vibration analysis of functionally graded and porous cylindrical micro/nano shells based on the three-dimensional elasticity and modified couple stress theories", Mech. Based Des. Struct. Mach., 50(6), 2184-2205. https://doi.org/10.1080/15397734.2020.1775095.
- Sayyad, A.S. and Ghugal, Y.M. (2021), "Static and free vibration analysis of doubly-curved functionally graded material shells", Compos. Struct., 269, 114045. https://doi.org/10.1016/j.compstruct.2021.114045.
- Sharma, N., Tiwari, P., Maiti, D.K. and Maity, D. (2021), "Free vibration analysis of functionally graded porous plate using 3-D degenerated shell element", Compos. Part C: Open Access, 6, 100208. https://doi.org/10.1016/j.jcomc.2021.100208.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGM) for free and forced vibration of timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-78. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-fgm nanoplates via a quasi-3d refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
- Tahouneh, V. and Naei, M.H. (2016), "The effect of multidirectional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations", Int. J. Adv. Struct. Eng., 8(1), 11-28. https://doi.org/10.1007/s40091-016-0110-4.
- Talebizadehsardari, P., Salehipour, H., Shahgholian-Ghahfarokhi, D., Shahsavar, A. and Karimi, M. (2022), "Free vibration analysis of the macro-micro-nano plates and shells made of a material with functionally graded porosity: A closed-form solution", Mech. Based Des. Struct. Mach., 50(3), 1054-1080. https://doi.org/10.1080/15397734.2020.1744002.
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Method. Appl. M., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
- Tornabene, F., Viola, E. and Inman, D.J. (2009) "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annul plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
- Wu, C.P. and Yu, L.T. (2019), "Free vibration analysis of bidirectional functionally graded annular plates using finite annular prism methods", J. Mech. Sci. Tech., 33(5), 2267-2279. https://doi.org/10.1007/s12206-019-0428-5.