DOI QR코드

DOI QR Code

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar (Department of Civil Engineering, Indian Institute of Technology Jammu) ;
  • V.B. Maji (Department of Civil Engineering, Indian Institute of Technology Madras)
  • 투고 : 2022.05.07
  • 심사 : 2023.10.12
  • 발행 : 2023.11.25

초록

Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.

키워드

참고문헌

  1. Afolagboye, L.O., He, J. and Wang, S. (2018), "Crack initiation and coalescence behavior of two non-parallel flaws", Geotech. Geol. Eng., 36(1), 105-133. https://doi.org/10.1007/s10706-017-0310-0.
  2. Amadei, B. and Goodman, R.E. (1981), "A 3-D Constitutive relation for fractured rock masses", Proceedings of the International symposium on the Mechanical Behaviour of Structured Media, Ottawa, 249-268.
  3. Amini, M.S., Sarfarazi, V. and Babanouri, N. (2021), "Influence of non-persistent joint sets on the failure behaviour of concrete under uniaxial compression test", Comput. Concrete, 28(3), 289-309. https://doi.org/10.12989/cac.2021.28.3.289.
  4. An, X., Ning, Y., Ma, G. and He, L. (2014), "Modeling progressive failures in rock slopes with non-persistent joints using the numerical manifold method", Int. J. Numer. Anal. Method. Geomech., 38, 679-701. https://doi.org/10.1002/nag.2226.
  5. Ashby, M.F.A. and Hallam, S.D. (1986), "The failure of brittle solids containing small cracks under compressive stress states", Acta Metallurgica, 34(3), 497-510. https://doi.org/10.1016/0001-6160(86)90086-6.
  6. Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y.
  7. Bobet, A. (1997), "Fracture coalescence in rock materials: Experimental oberservations and Numerical Predictions", Sc.D, Thesis, Massachusetts Institute of Technology, Cambridge, MA.
  8. Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6.
  9. Bobet, A. and Einstein, H.H. (1998a), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
  10. Bobet, A. and Einstein, H.H. (1998b), "Numerical modeling of fracture coalescence in a model rock material", Int. J. Fracture, 92, 221-252. https://doi.org/10.1023/A:1007460316400.
  11. Brace, W.F. (1961), "Dependence of fracture strength of rocks on grain size", Bulletin of the Mimeral Industries Experiment Station Mining Engineering Series, Rock Mechanics, 76, 99-103.
  12. Chen, G., Kenmeny, M. and Harpalani, S. (1995), "Fracture propagation and coalescence in marble plates with pre-cut notches under compression", Proceedings of the Symposium on fractured jointed rock masses, Lake Tahoe, CA, USA.
  13. Esterhuizen, G.S., Dolinar, D.R. and Ellenberger, J.L. (2011), "Pillar strength in underground stone mines in the United States", Int. J. Rock Mech. Min. Sci., 48(1), 42-50. https://doi.org/10.1016/J.IJRMMS.2010.06.003.
  14. Goodman, R.E. (1989), Introduction to Rock Mechanics, Second Edition, Wiley Publication, New York, NY, USA.
  15. Haeri, H., Sarfarazi, V., Ebneabbasi, P., Nazari-maram, A., Shahbazian, A., Marji, M.F. and Mohamadi, A.R. (2020), "XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression", Constr. Build. Mater., 236, 117500. https://doi.org/10.1016/j.conbuildmat.2019.117500.
  16. Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", Int. J Fracture Mech., 1(3), 139-155. https://doi.org/10.1007/BF00186851.
  17. Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", Int. J. Fract. Mech., 1(3), 139-155. https://doi.org/10.1007/BF00186851.
  18. Hoek, E. and Martin, C.D. (2014), "Fracture initiation and propagation in intact rock - A review", J. Rock Mech. Geotech. Eng., 6, 287-300. https://doi.org/10.1016/j.jrmge.2014.06.001.
  19. Huang, D., Gu, D., Yang, C., Huang, R. and Fu, G. (2015), "Investigation on mechanical behaviour of sandstone with two pre-existing flaws under triaxial compression", Rock Mech. Rock Eng., 49, 375-399. https://doi.org/10.1007/s00603-015-0757-3.
  20. Huang, J., Chen, G., Zhao, Y. and Wang, R. (1990), "An experimental study of the strain field development prior to failure of a marble plate under compression", Tectonophysics, 175, 269-284. https://doi.org/10.1016/0040-1951(90)90142-U.
  21. Ingraffea, A.R. and Heuze, F.E. (1980), "Finite element models for rock fracture mechanics", Int. J. Numer. Anal. Method. Geomech., 4, 25-43. https://doi.org/10.1002/nag.1610040103.
  22. ISRM (1978), "Suggested method for the quantitative description of discontinuities in rock masses", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 15, 319-368. https://doi.org/10.1016/0148-9062(78)91472-9.
  23. Jade, S. and Sitharam, T.G. (2003), "Characterization of strength and deformation of jointed rock mass based on statistical analysis", Int. J. Geomech., 3(1), 43-54. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(43).
  24. Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W. (2007), Fundamentals of Rock Mechanics, Wiley-Blackwell Publication, UK.
  25. Jin, J., Cao, P., Chen, Y., Pu, C., Mao, D. and Fan, X. (2017), "Influence of single flaw on the failure process and energy mechanics of rock-like material", Comput. Geotech.., 86, 150-162. https://doi.org/10.1016/j.compgeo.2017.01.011.
  26. Kang, G., Ning, Y., Chen, P., Pang, S. and Shao, Y. (2022), "Comprehensive simulations of rock fracturing with pre-existing cracks by the numerical manifold method", Acta Geotechica, 17, 857-876. https://doi.org/10.1007/s11440-021-01252-3.
  27. Lajtai, E.Z. (1974), "Brittle fracture in compression", Int. J. Fracture, 10(4), 525-536. https://doi.org/10.1007/BF00155255.
  28. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48, 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  29. Lee, J.L. and Hong, J.W. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.
  30. Li, H. and Wong, L.N.Y. (2012), "Influence of flaw inclination angle and loading condition on crack initiation and propagation", Int. J. Solids Struct., 49, 2482-2499. https://doi.org/10.1016/j.ijsolstr.2012.05.012.
  31. Manoucherian, A. and Marji, M.F. (2012), "Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression", Acta Mechanica Sinica, 28(5), 1389-1397. https://doi.org/10.1007/s10409-012-0145-0.
  32. McClintock, F.A. and Walsh, J.B. (1962), "Friction on Griffith cracks in rocks under pressure", Proceedings of the 4th US Congress Applied Mechanics.
  33. Miao, S., Pan, P-Z, Wu, Z., Li, S. and Zhao,S. (2018), "Fracture analysis of sandstone with a single filled flaw under uniaxial compression", Eng. Fract. Mech., 204, 319-343, https://doi.org/10.1016/j.engfracmech.2018.10.009.
  34. Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24, 985-999. https://doi.org/10.1007/s10706-005-8352-0.
  35. Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
  36. Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
  37. Petit, J.P. and Barquins, M. (1988), "Can natural faults propagate under mode II conditions?", Tectonics, 7(6), 1243-1256. https://doi.org/10.1029/TC007i006p01243.
  38. Reyes, O. and Einstein, H.H. (1991), "Failure mechanism of fractured rock-a fracture coalescence model", Proceedings of the 7th international congress on rock mechanics, Germany.
  39. Saberhosseini, S.E., Keshavarzi, R. and Ahangari, K. (2014), "A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells", Geomech. Eng., 7(3), 233-246. https://doi.org/10.12989/gae.2014.7.3.233.
  40. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock- model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
  41. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock- model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
  42. Sarfarazi, V., Abharian, S. and Ghalam E.Z. (2021), "Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression", Comput. Concrete, 27(2), 99-109. https://doi.org/10.12989/cac.2021.27.2.099.
  43. Sarfarazi, V., Wang, X., Nesari, M. and Ghalam, E.Z. (2022), "Study of compressive behavior of triple joints using experimental test and numerical simulation", Smart Struct. Syst., 30(1), 49-62. https://doi.org/10.12989/sss.2022.30.1.049.
  44. Sharafisafa, M. and Nazem, M. (2014), "Application of the distinct element method and the extended finite element in modelling cracks and coalescence in brittle materials", Comput. Mater. Sci., 91, 102-121. https://doi.org/10.1016/j.commatsci.2014.04.006.
  45. Shemirani, A.B., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017), "A review paper about experimental investigations on failure behaviour of non-persistent joint", Geomech. Eng., 13(4), 535-570. https://doi.org/10.12989/gae.2017.13.4.535.
  46. Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stresses in experiments", J. Geophys.Res., 100(4), 5975-5990. https://doi.org/10.1029/95JB00040.
  47. Sivakumar, G. and Maji, V.B. (2018), "A study on crack initiation and propagation in rock with pre-existing flaw under uniaxial compression", Indian Geotech. J., 48(4), 626-639. https://doi.org/10.1007/s40098-018-0304-8.
  48. Sivakumar, G. and Maji, V.B. (2021), "Crack growth in rocks with pre-existing narrow flaws under uniaxial compression", Int. J. Geomech., 21(4), 04021032. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001960.
  49. Szwedzicki, T. (2007), "A hypothesis on modes of failure of rock samples tested in uniaxial compression", Rock Mech. Rock Eng., 40(1), 97-104. https://doi.org/10.1007/s00603-006-0096-5.
  50. Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part II: numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X.
  51. Trivedi, A. (2013), "Estimating in situ deformation of rock masses using a hardening parameter and RQD", Int. J. Geomech., 13(4), 348-364. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000215.
  52. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038.
  53. Wang, C. and Wang, S. (2022), "Modified generalized maximum tangential stress criterion for simulation of crack propagation and its application in discontinuous deformation analysis", Eng. Fract. Mech., 259, 108159. https://doi.org/10.1016/j.engfracmech.2021.108159.
  54. Wang, C., Wang, S., Chen, G., Yu, P. and Peng, X. (2021), "Implementation of a J-integral based maximum circumferential tensile stress theory in DDA for simulating crack propagation", Eng. Fract. Mech., 246, 107621. https://doi.org/10.1016/j.engfracmech.2021.107621
  55. Wang, T.T. and Huang, T.H. (2009), "A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints", Int. J. Rock Mech. Min. Sci., 46(3), 521-530. https://doi.org/10.1016/j.ijrmms.2008.09.011.
  56. Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013.
  57. Wawersik, W.R. and Fairhurst, C. (1970), "A study of brittle rock fracture in laboratory compression experiments", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 7(5), 561-575. https://doi.org/10.1016/0148-9062(70)90007-0.
  58. Wong, L.N.Y. and Einstein, H.H. (2009a), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
  59. Wong, L.N.Y. and Einstein, H.H. (2009b), "Crack coalescence in molded gypsum and Carrara marble: Part 1-macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
  60. Wong, L.N.Y. and Einstein, H.H. (2009c), "Crack coalescence in molded gypsum and Carrara marble: Part 2-microscopic observations and interpretation" Rock Mech. Rock Eng., 42(3), 513-545. https://doi.org/10.1007/s00603-008-0003-3.
  61. Wong, R.H. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.
  62. Wong, R.H.C., Guo, Y.S.H., Li, L.Y., Chau, K.T., Zhu, W.S. and Li, S.C. (2006), "Anti-wing crack growth from surface flaw in real rock under uniaxial compression", Proceedings of the 16th European Conference on Fracture (EFC16), Alexandroupolis, Greece.
  63. Wu, Z. and Wong, L.N.Y. (2012), "Frictional crack initiation and propagation analysis using the numerical manifold method", Comput. Geotech., 39, 38-53. https://doi.org/10.1016/j.compgeo.2011.08.011.
  64. Xie, Y., Cao, P., Liu, J. and Dong, L. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14. https://doi.org/10.1016/j.compgeo.2015.12.013.
  65. Yang, S.Q. and Jing, H.W. (2011), "Strength and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fracture, 168, 227-250. https://doi.org/10.1007/s10704-010-9576-4.
  66. Yang, S.Q., Jiang, Y.Z., Xu, W.Y. and Chen, X.Q. (2008), "Experimental investigation on strength and failure behaviour of pre-cracked marble under conventional triaxial compression", Int. J. Solids Struct., 45(15), 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023
  67. Yang, SQ (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541.
  68. Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking process in rock-like material containing a single flaw under uniaxial compression: a numerical study on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.
  69. Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.
  70. Zhang, X.P., Liu, Q., Wu, S. and Tang, X. (2015), "Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression", Eng. Geol., 199, 74-90. https://doi.org/10.1016/j.enggeo.2015.10.007.
  71. Zhao, C., Zhou, Y., Zhang, Q., Zhao, C. and Matsuda, H. (2019), "Influence of inclination angles and confining pressures on mechanical behavior of rock materials containing a pre-existing crack", Int. J. Numer. Analytical Method. Geomech., 44, 353-370. https://doi.org/10.1002/nag.3003.
  72. Zhao, Y., Zhang, L., Wang, W., Pu, C., Wan, W. and Tang, J. (2016), "Cracking and stress-strain behaviour of rock-like material containing two flaws under uniaxial compression", Rock Mech. Rock Eng., 49(7), 2665-2687. https://doi.org/10.1007/s00603-016-0932-1.