References
- Afolagboye, L.O., He, J. and Wang, S. (2018), "Crack initiation and coalescence behavior of two non-parallel flaws", Geotech. Geol. Eng., 36(1), 105-133. https://doi.org/10.1007/s10706-017-0310-0.
- Amadei, B. and Goodman, R.E. (1981), "A 3-D Constitutive relation for fractured rock masses", Proceedings of the International symposium on the Mechanical Behaviour of Structured Media, Ottawa, 249-268.
- Amini, M.S., Sarfarazi, V. and Babanouri, N. (2021), "Influence of non-persistent joint sets on the failure behaviour of concrete under uniaxial compression test", Comput. Concrete, 28(3), 289-309. https://doi.org/10.12989/cac.2021.28.3.289.
- An, X., Ning, Y., Ma, G. and He, L. (2014), "Modeling progressive failures in rock slopes with non-persistent joints using the numerical manifold method", Int. J. Numer. Anal. Method. Geomech., 38, 679-701. https://doi.org/10.1002/nag.2226.
- Ashby, M.F.A. and Hallam, S.D. (1986), "The failure of brittle solids containing small cracks under compressive stress states", Acta Metallurgica, 34(3), 497-510. https://doi.org/10.1016/0001-6160(86)90086-6.
- Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y.
- Bobet, A. (1997), "Fracture coalescence in rock materials: Experimental oberservations and Numerical Predictions", Sc.D, Thesis, Massachusetts Institute of Technology, Cambridge, MA.
- Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6.
- Bobet, A. and Einstein, H.H. (1998a), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
- Bobet, A. and Einstein, H.H. (1998b), "Numerical modeling of fracture coalescence in a model rock material", Int. J. Fracture, 92, 221-252. https://doi.org/10.1023/A:1007460316400.
- Brace, W.F. (1961), "Dependence of fracture strength of rocks on grain size", Bulletin of the Mimeral Industries Experiment Station Mining Engineering Series, Rock Mechanics, 76, 99-103.
- Chen, G., Kenmeny, M. and Harpalani, S. (1995), "Fracture propagation and coalescence in marble plates with pre-cut notches under compression", Proceedings of the Symposium on fractured jointed rock masses, Lake Tahoe, CA, USA.
- Esterhuizen, G.S., Dolinar, D.R. and Ellenberger, J.L. (2011), "Pillar strength in underground stone mines in the United States", Int. J. Rock Mech. Min. Sci., 48(1), 42-50. https://doi.org/10.1016/J.IJRMMS.2010.06.003.
- Goodman, R.E. (1989), Introduction to Rock Mechanics, Second Edition, Wiley Publication, New York, NY, USA.
- Haeri, H., Sarfarazi, V., Ebneabbasi, P., Nazari-maram, A., Shahbazian, A., Marji, M.F. and Mohamadi, A.R. (2020), "XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression", Constr. Build. Mater., 236, 117500. https://doi.org/10.1016/j.conbuildmat.2019.117500.
- Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", Int. J Fracture Mech., 1(3), 139-155. https://doi.org/10.1007/BF00186851.
- Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", Int. J. Fract. Mech., 1(3), 139-155. https://doi.org/10.1007/BF00186851.
- Hoek, E. and Martin, C.D. (2014), "Fracture initiation and propagation in intact rock - A review", J. Rock Mech. Geotech. Eng., 6, 287-300. https://doi.org/10.1016/j.jrmge.2014.06.001.
- Huang, D., Gu, D., Yang, C., Huang, R. and Fu, G. (2015), "Investigation on mechanical behaviour of sandstone with two pre-existing flaws under triaxial compression", Rock Mech. Rock Eng., 49, 375-399. https://doi.org/10.1007/s00603-015-0757-3.
- Huang, J., Chen, G., Zhao, Y. and Wang, R. (1990), "An experimental study of the strain field development prior to failure of a marble plate under compression", Tectonophysics, 175, 269-284. https://doi.org/10.1016/0040-1951(90)90142-U.
- Ingraffea, A.R. and Heuze, F.E. (1980), "Finite element models for rock fracture mechanics", Int. J. Numer. Anal. Method. Geomech., 4, 25-43. https://doi.org/10.1002/nag.1610040103.
- ISRM (1978), "Suggested method for the quantitative description of discontinuities in rock masses", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 15, 319-368. https://doi.org/10.1016/0148-9062(78)91472-9.
- Jade, S. and Sitharam, T.G. (2003), "Characterization of strength and deformation of jointed rock mass based on statistical analysis", Int. J. Geomech., 3(1), 43-54. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(43).
- Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W. (2007), Fundamentals of Rock Mechanics, Wiley-Blackwell Publication, UK.
- Jin, J., Cao, P., Chen, Y., Pu, C., Mao, D. and Fan, X. (2017), "Influence of single flaw on the failure process and energy mechanics of rock-like material", Comput. Geotech.., 86, 150-162. https://doi.org/10.1016/j.compgeo.2017.01.011.
- Kang, G., Ning, Y., Chen, P., Pang, S. and Shao, Y. (2022), "Comprehensive simulations of rock fracturing with pre-existing cracks by the numerical manifold method", Acta Geotechica, 17, 857-876. https://doi.org/10.1007/s11440-021-01252-3.
- Lajtai, E.Z. (1974), "Brittle fracture in compression", Int. J. Fracture, 10(4), 525-536. https://doi.org/10.1007/BF00155255.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48, 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Lee, J.L. and Hong, J.W. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.
- Li, H. and Wong, L.N.Y. (2012), "Influence of flaw inclination angle and loading condition on crack initiation and propagation", Int. J. Solids Struct., 49, 2482-2499. https://doi.org/10.1016/j.ijsolstr.2012.05.012.
- Manoucherian, A. and Marji, M.F. (2012), "Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression", Acta Mechanica Sinica, 28(5), 1389-1397. https://doi.org/10.1007/s10409-012-0145-0.
- McClintock, F.A. and Walsh, J.B. (1962), "Friction on Griffith cracks in rocks under pressure", Proceedings of the 4th US Congress Applied Mechanics.
- Miao, S., Pan, P-Z, Wu, Z., Li, S. and Zhao,S. (2018), "Fracture analysis of sandstone with a single filled flaw under uniaxial compression", Eng. Fract. Mech., 204, 319-343, https://doi.org/10.1016/j.engfracmech.2018.10.009.
- Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24, 985-999. https://doi.org/10.1007/s10706-005-8352-0.
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
- Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
- Petit, J.P. and Barquins, M. (1988), "Can natural faults propagate under mode II conditions?", Tectonics, 7(6), 1243-1256. https://doi.org/10.1029/TC007i006p01243.
- Reyes, O. and Einstein, H.H. (1991), "Failure mechanism of fractured rock-a fracture coalescence model", Proceedings of the 7th international congress on rock mechanics, Germany.
- Saberhosseini, S.E., Keshavarzi, R. and Ahangari, K. (2014), "A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells", Geomech. Eng., 7(3), 233-246. https://doi.org/10.12989/gae.2014.7.3.233.
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock- model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock- model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
- Sarfarazi, V., Abharian, S. and Ghalam E.Z. (2021), "Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression", Comput. Concrete, 27(2), 99-109. https://doi.org/10.12989/cac.2021.27.2.099.
- Sarfarazi, V., Wang, X., Nesari, M. and Ghalam, E.Z. (2022), "Study of compressive behavior of triple joints using experimental test and numerical simulation", Smart Struct. Syst., 30(1), 49-62. https://doi.org/10.12989/sss.2022.30.1.049.
- Sharafisafa, M. and Nazem, M. (2014), "Application of the distinct element method and the extended finite element in modelling cracks and coalescence in brittle materials", Comput. Mater. Sci., 91, 102-121. https://doi.org/10.1016/j.commatsci.2014.04.006.
- Shemirani, A.B., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017), "A review paper about experimental investigations on failure behaviour of non-persistent joint", Geomech. Eng., 13(4), 535-570. https://doi.org/10.12989/gae.2017.13.4.535.
- Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stresses in experiments", J. Geophys.Res., 100(4), 5975-5990. https://doi.org/10.1029/95JB00040.
- Sivakumar, G. and Maji, V.B. (2018), "A study on crack initiation and propagation in rock with pre-existing flaw under uniaxial compression", Indian Geotech. J., 48(4), 626-639. https://doi.org/10.1007/s40098-018-0304-8.
- Sivakumar, G. and Maji, V.B. (2021), "Crack growth in rocks with pre-existing narrow flaws under uniaxial compression", Int. J. Geomech., 21(4), 04021032. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001960.
- Szwedzicki, T. (2007), "A hypothesis on modes of failure of rock samples tested in uniaxial compression", Rock Mech. Rock Eng., 40(1), 97-104. https://doi.org/10.1007/s00603-006-0096-5.
- Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part II: numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X.
- Trivedi, A. (2013), "Estimating in situ deformation of rock masses using a hardening parameter and RQD", Int. J. Geomech., 13(4), 348-364. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000215.
- Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038.
- Wang, C. and Wang, S. (2022), "Modified generalized maximum tangential stress criterion for simulation of crack propagation and its application in discontinuous deformation analysis", Eng. Fract. Mech., 259, 108159. https://doi.org/10.1016/j.engfracmech.2021.108159.
- Wang, C., Wang, S., Chen, G., Yu, P. and Peng, X. (2021), "Implementation of a J-integral based maximum circumferential tensile stress theory in DDA for simulating crack propagation", Eng. Fract. Mech., 246, 107621. https://doi.org/10.1016/j.engfracmech.2021.107621
- Wang, T.T. and Huang, T.H. (2009), "A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints", Int. J. Rock Mech. Min. Sci., 46(3), 521-530. https://doi.org/10.1016/j.ijrmms.2008.09.011.
- Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013.
- Wawersik, W.R. and Fairhurst, C. (1970), "A study of brittle rock fracture in laboratory compression experiments", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 7(5), 561-575. https://doi.org/10.1016/0148-9062(70)90007-0.
- Wong, L.N.Y. and Einstein, H.H. (2009a), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
- Wong, L.N.Y. and Einstein, H.H. (2009b), "Crack coalescence in molded gypsum and Carrara marble: Part 1-macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
- Wong, L.N.Y. and Einstein, H.H. (2009c), "Crack coalescence in molded gypsum and Carrara marble: Part 2-microscopic observations and interpretation" Rock Mech. Rock Eng., 42(3), 513-545. https://doi.org/10.1007/s00603-008-0003-3.
- Wong, R.H. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.
- Wong, R.H.C., Guo, Y.S.H., Li, L.Y., Chau, K.T., Zhu, W.S. and Li, S.C. (2006), "Anti-wing crack growth from surface flaw in real rock under uniaxial compression", Proceedings of the 16th European Conference on Fracture (EFC16), Alexandroupolis, Greece.
- Wu, Z. and Wong, L.N.Y. (2012), "Frictional crack initiation and propagation analysis using the numerical manifold method", Comput. Geotech., 39, 38-53. https://doi.org/10.1016/j.compgeo.2011.08.011.
- Xie, Y., Cao, P., Liu, J. and Dong, L. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14. https://doi.org/10.1016/j.compgeo.2015.12.013.
- Yang, S.Q. and Jing, H.W. (2011), "Strength and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fracture, 168, 227-250. https://doi.org/10.1007/s10704-010-9576-4.
- Yang, S.Q., Jiang, Y.Z., Xu, W.Y. and Chen, X.Q. (2008), "Experimental investigation on strength and failure behaviour of pre-cracked marble under conventional triaxial compression", Int. J. Solids Struct., 45(15), 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023
- Yang, SQ (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541.
- Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking process in rock-like material containing a single flaw under uniaxial compression: a numerical study on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.
- Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.
- Zhang, X.P., Liu, Q., Wu, S. and Tang, X. (2015), "Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression", Eng. Geol., 199, 74-90. https://doi.org/10.1016/j.enggeo.2015.10.007.
- Zhao, C., Zhou, Y., Zhang, Q., Zhao, C. and Matsuda, H. (2019), "Influence of inclination angles and confining pressures on mechanical behavior of rock materials containing a pre-existing crack", Int. J. Numer. Analytical Method. Geomech., 44, 353-370. https://doi.org/10.1002/nag.3003.
- Zhao, Y., Zhang, L., Wang, W., Pu, C., Wan, W. and Tang, J. (2016), "Cracking and stress-strain behaviour of rock-like material containing two flaws under uniaxial compression", Rock Mech. Rock Eng., 49(7), 2665-2687. https://doi.org/10.1007/s00603-016-0932-1.