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ON ISOMORPHISM THEOREMS AND CHINESE REMAINDER
THEOREM IN HYPERNEAR RINGS

M. Al Tahan a and B. Davvaz b, ∗

Abstract. The purpose of this paper is to consider the abstract theory of hy-
pernear rings. In this regard, we derive the isomorphism theorems for hypernear
rings as well as Chinese Remainder theorem. Our results can be considered as a
generalization for the cases of Krasner hyperrings, near rings and rings.

1. Introduction

Recent developments in various algebraic structures and the applications of those
in different areas play an important role in Science and Technology. One of the best
tools to study the non-linear algebraic systems is the theory of near rings. The
interest in near rings and near-fields started at the beginning of the 20th century,
when L. Dickson wanted to know whether the list of axioms for skew fields is redun-
dant or not. He found in [6] that there do exist “near fields” which fulfill all axioms
for skew fields except one distributive law. Since 1950, the theory of near rings
had applications to several domains, for instance in the area of dynamical systems,
graphs, homological algebra, universal algebra, category theory, geometry, and so
on. A near ring is an algebraic structure similar to a ring but satisfying fewer ax-
ioms. Although near rings arise naturally in various ways, most near rings studied
today arise as the endomorphisms of a group or cogroup object of a category. For
details about near ring theory and applications, we refer to [1, 7].

Algebraic hyperstructures represent a natural generalization of classical algebraic
structures and they were introduced by Marty [10] in 1934 at the eighth Congress
of Scandinavian Mathematicians, where he generalized the notion of a group to that
of a hypergroup. In a group, the composition of two elements is an element whereas
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in a hypergroup, the composition of two elements is a non-empty set. Since then,
researchers were busy in defining and working on other types of hyperstructures
such as hyperring, hypermodule, and many others. For example, Krasner [9] intro-
duced a special type of hyperrings known as Krasner hyperring and he with other
researchers worked on it and its properties. Since the hyperring is a very general hy-
perstructure, several researchers endowed it with more stronger or less strong axiom.
As a result we are really dealing now with a big number of hyperrings. In recent
years, an interest in hyperalgebraic system with binary hyperoperation of addition
and operation of multiplication satisfying all hyperring axioms except possibly one
of the distributive law and the commutativity of addition has arisen. Such systems
are generally called hypernear rings and they were introduced by Dasic [5] during
the Fourth international congress on algebraic hyperstructures and applications in
1990.

In our paper, we consider hypernear rings from theoretical point of view and it is
organized as follows. After an Introduction, in Section 2, we present some prelimi-
naries related to hypernear rings and we study some of their properties. In Section
3, we define factor hypernear rings and derive the three isomorphism theorems in
hypernear rings. Finally, in Section 4, we derive Chinese Remainder Theorem in
hypernear rings and deduce it for near rings.

2. Properties of Hypernear Rings

In this section, we present some definitions related to hypernear rings (see [2, 3,
5, 8]) that are used throughout the paper. Moreover, we present some examples and
study some properties of hypernear rings that are used in Sections 3 and 4.

Definition 2.1 ([1]). Let R be a non-empty set. Then (R, +, ·) is called a near ring
if:

(1) (R, +) is a group (not necessary abelian);
(2) (R, ·) is a semigroup;
(3) x · (y + z) = x · y + x · z for all x, y, z ∈ R (Left distributive law).

Let H be a non-empty set. Then, a mapping ◦ : H × H → P∗(H) is called a
binary hyperoperation on H, where P∗(H) is the family of all non-empty subsets of
H. The couple (H, ◦) is called a hypergroupoid.



ON ISOMORPHISM THEOREMS AND CHINESE REMAINDER THEOREM 379

In the above definition, if A and B are two non-empty subsets of H and x ∈ H,
then we define:

A ◦B =
⋃

a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

Definition 2.2 ([2, 3]). A quasi-canonical hypergroup is a hypergroupoid (R, +),
where 0 ∈ R is an identity element, “+” maps R×R into the non-empty subsets of
R, and the following axioms hold for all x, y, z ∈ R:

(1) (x + y) + z = x + (y + z),
(2) 0 + x = x + 0 = x,
(3) −x ∈ R with 0 ∈ (−x + x) ∩ (x + (−x)),
(4) x ∈ y + z implies y ∈ x− z and z ∈ −y + x.

The following elementary facts about quasi-canonical hypergroup follow easily from
the axioms: −(−x) = x, −(x + y) = −y − x.

Definition 2.3 ([9]). Let R be a non-empty set. Then (R, +, ·) is called a Krasner
hyperring if:

(1) (R, +) is a commutative quasi-canonical hypergroup with identity 0;
(2) (R, ·) is a semigroup with x · 0 = 0 and 0 · x = 0 for all x ∈ R;
(3) x · (y + z) = x · y + x · z for all x, y, z ∈ R (Left distributive law);
(4) (x + y) · z = x · z + y · z for all x, y, z ∈ R (Right distributive law).

Definition 2.4 ([5]). Let R be a non-empty set. Then (R, +, ·) is called a (left)
hypernear ring if:

(1) (R, +) is a quasi-canonical hypergroup with identity 0;
(2) (R, ·) is a semigroup and x · 0 = 0 for all x ∈ R;
(3) x · (y + z) = x · y + x · z for all x, y, z ∈ R (Left distributive law).

Remark 1. In view of axiom 3 in Definition 2.4, one speaks more precisely about
“left hypernear rings”. Postulating (x + y) · z = x · z + y · z for all x, y, z ∈ R

instead of 3, one gets “right hypernear rings”. The theory runs completely parallel
in both cases, of course one can decide to use just one version. Moreover, one can
easily construct a right/left hypernear ring (R, +, ?) from a left/right hypernear ring
(R, +, ·) by using the operation x ? y = y · x for all x, y ∈ R.

Throughout our paper, we deal with left hypernear rings.



380 M. Al Tahan & B. Davvaz

Remark 2. Every near ring is a hypernear ring.

Remark 3. Every Krasner hyperring is a hypernear ring.

Remark 4. Let (R, +) be a quasi-canonical hypergroup and define “·” as:

(1) x · y = 0 for all x, y ∈ R. Then (R, +, ·) is a hypernear ring called the trivial
hypernear ring.

(2) x · y = y for all x, y ∈ R. Then (R, +, ·) is a hypernear ring called the trivial
constant hypernear ring.

(3) x · y =

{
0 if x = 0,
y otherwise.

for all x, y ∈ R. Then (R, +, ·) is a hypernear

ring called the trivial zero-symmetric hypernear ring.

Definition 2.5. Let (R, +, ·) be a hypernear ring. If 0 · x = 0 for all x ∈ R then R

is called zero symmetric hypernear ring.

Definition 2.6. Let (R, +, ·) be a hypernear ring. If 1 ∈ R and 1 · x = x · 1 = x for
all x ∈ R then R is called unitary hypernear ring.

Definition 2.7. Let (R, +, ·) be a unitary hypernear ring. If (R−{0}, ·) is a group
then R is called hypernear field.

Definition 2.8 ([5]). Let (R, +, ·) be a hypernear ring. A non-empty subset S of
R is called a subhypernear ring of R if (S, +, ·) is a hypernear ring.

Remark 5. To prove that (S, +, ·) is a subhypernear ring of (R, +, ·), it suffices to
show that x− y ⊆ S and x · y ∈ S for all x, y ∈ S.

Definition 2.9 ([5]). Let (R, +, ·), (S, +1, ·1) be hypernear rings and f : R → S be
a function. Then f is called a hypernear ring homomorphism if for all x, y ∈ R

(1) f(x + y) = f(x) +1 f(y);
(2) f(x · y) = f(x) ·1 f(y); and
(3) f(0) = 0.

If f is also bijective then it is called hypernear ring isomomorphism and we say that
R and S are isomorphic hypernear rings (R ∼= S).

Definition 2.10 ([5]). Let (R, +, ·), (S, +1, ·1) be hypernear rings and f : R → S

be a hypernear ring homomorphism. Then Kernel of f is defined as

Ker(f) = {x ∈ R : f(x) = 0}.
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Proposition 2.11. Let (R, +, ·), (S, +1, ·1) be hypernear rings and f : R → S be a
hypernear ring homomorphism. Then for all x, y ∈ R

(1) f(−y) = −f(y);
(2) f(x− y) = f(x)− f(y).

Proof. The proof is straightforward. ¤

Lemma 2.12. Let (H, +) be a quasi-canonical hypergroup and let M(H) be the set
of all mappings f : H → H. For all f, g ∈ M(H) we define the hyperoperation f ⊕ g

of mappings as follows:

(f ⊕ g)(x) = {h ∈ M(H) : h(x) ∈ f(x) + g(x)},

and the operation “·” as (f · g)(x) = g(f(x)). Then (M(H),⊕, ·) is a hypernear
ring.

Proof. The proof is straightforward. ¤

Lemma 2.13 ([5]). Let (H, +) be a quasi-canonical hypergroup and let M0(H) be
the set of all mappings f : H → H such that f(0) = 0. For all f, g ∈ M0(H) we
define the hyperoperation f ⊕ g of mappings as follows:

(f ⊕ g)(x) = {h ∈ M0(H) : h(x) ∈ f(x) + g(x)},

and the operation “·” as (f · g)(x) = g(f(x)). Then (M0(H),⊕, ·) is a hypernear
ring.

Remark 6. The hypernear ring (M0(H),⊕, ·) of Lemma 2.13 is a zero-symmetric
and unitary hypernear ring (the unity here is the identity map). Moreover, it is a
subhypernear ring of the hypernear ring (M(H),⊕, ·) of Lemma 2.12.

Example 1. Let (H, +) be the quasi-canonical hypergroup defined by the following
table.

+ 0 1

0 0 1

1 1 {0, 1}

Let f be the zero map, g be the identity map, h be the map defined as h(0) =
1, h(1) = 0, and i be the map defined as i(0) = 1, i(1) = 1. Using Lemmas 2.12
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and 2.13, we get that (M(H),⊕, ·) is a hypernear ring and (M0(H),⊕, ·) is a zero-
symmetric and unitary hypernear ring and they are presented by the following tables.

⊕ f g h i

f f g h i

g g {f, g} i {h, i}
h h i {f, h} {g, i}
i i {h, i} {g, i} {f, g, h, i}

and

· f g h i

f f f i i

g f g h i

h f h g i

i f i f i

⊕ f g

f f g

g g {f, g}
and

· f g

f f f

g f g

Example 2. Let (R, +, ·) be defined by the following tables. Then Remark 4 asserts
that (R, +, ·) is a constant hypernear ring. Moreover, it is not isomorphic to the
hypernear ring (M0(H),⊕, ·) of Example 1.

+ 0 1

0 0 1

1 1 {0, 1}
and

· 0 1

0 0 1

1 0 1

Example 3. Let (R, +, ·) be defined by the following tables. Then Remark 4 asserts
that (R, +, ·) is a constant hypernear ring.
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+ 0 1 2

0 0 1 2

1 1 {0, 2} {1, 2}
2 2 {1, 2} {0, 1}

and

· 0 1 2

0 0 1 2

1 0 1 2

2 0 1 2

Lemma 2.14. Let (R, +) be a quasi-canonical hypergroup and R[x] be the set of all
polynomials with coefficients from R. Then (R[x], +, ·) is a hypernear ring, where
for all p(x) = a0 +a1x+ . . .+anxn, q(x) = b0 +b1x+ . . .+bnxn ∈ R[x], p(x)+q(x) =
{h(x) = c0 + . . . + cnxn : ci ∈ ai + bi for i = 1, . . . , n} and p(x) · q(x) = q(p(x)).

Proof. The proof is straightforward. ¤

Example 4. Let n be a natural number, (R, +) be a quasi-canonical hypergroup
and Pn(R) be the set of all polynomials with degree less than or equal to n and with
coefficients from R. Then (Pn(R),+, ·) is a constant hypernear ring, where for all
p(x) = a0 + a1x + . . . + anxn, q(x) = b0 + b1x + . . . + bnxn ∈ Pn(R), p(x) + q(x) =
{h(x) = c0 + . . . + cnxn : ci ∈ ai + bi for i = 1, . . . , n} and p(x) · q(x) = q(x).

Example 5. Let n be a natural number, (R, +) be a quasi-canonical hypergroup
and Mn(R) be the set of all n×n matrices with entries from R. Then (Mn(R), +, ·)
is a constant hypernear ring, where for all A = (aij), B = (bij) ∈ Mn(R), A + B =
{C = (cij) : cij ∈ aij + bij} and A ·B = B.

Example 6. Let (R, +, ·) be defined by the following tables. Then Remark 4 asserts
that (R, +, ·) is a zero-symmetric hypernear ring.

+ 0 1 2

0 0 1 2

1 1 {0, 2} {1, 2}
2 2 {1, 2} {0, 1}

and
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· 0 1 2

0 0 0 0

1 0 1 2

2 0 1 2

Example 7. Let (R, +, ·) be defined by the following tables. Then Remark 4 asserts
that (R, +, ·) is a zero-symmetric hypernear ring.

+ 0 1 2 3

0 0 1 2 3

1 1 {0, 1} 2 3

2 2 2 {0, 1, 3} {2, 3}
3 3 3 {2, 3} {0, 1, 2}

and

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

Proposition 2.15. Let (R, +, ·) be a hypernear ring and x, y ∈ R. Then x · (−y) =
−x · y.

Definition 2.16. [5] Let (R, +, ·) be a hypernear ring. A subhypernear ring I of R

is called a hyperideal of R if:

(1) x + y − x ⊆ I for all x ∈ R and y ∈ I;
(2) x · y ∈ I for all x ∈ R and y ∈ I i.e., RI ⊆ I;
(3) (x + a) · y − x · y ⊆ I for all x, y ∈ R and a ∈ I.

Example 8. Let (R, +, ·) be the hypernear ring in Example 7. Then ({0, 1}, +, ·)
is a subhypernear ring of R that is not a hyperideal (This is clear as −3 + 0 + 3 =
3 + 3 = {0, 1, 2} * {0, 1}).

Remark 7. Every hypernear ring R 6= {0} has at least two hyperideals: R and the
trivial hyperideal {0}.

Remark 8. If I is a hyperideal of a zero-symmetric hypernear ring R then RI∪IR ⊆
I.

Proposition 2.17. Let (R, +, ·) be a hypernear ring and I a hyperideal of R. If

(1) R is unitary and 1 ∈ I then I = R.
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(2) R is a hypernear field then I = {0} or I = R.

Proof. The proof is straightforward. ¤

Proposition 2.18. Let (R, +, ·) be a hypernear ring and A,B be hyperideals of R.
Then A ∩B is a hyperideal of R.

Proof. The proof is straightforward. ¤

Corollary 2.19. Let (R, +, ·) be a hypernear ring and Ai be a hyperideal of R for
i = 1, . . . , n. Then

⋂n
i=1 Ai is a hyperideal of R.

Proof. The proof follows by using Proposition 2.18 and induction. ¤

Proposition 2.20. Let (R, +, ·) be a hypernear ring and A,B be hyperideals of R.
Then A + B = B + A.

Proof. Let x ∈ A + B. Then there exist a ∈ A, b ∈ B such that x ∈ a + b. We
get now that x ∈ 0 + a + b ⊆ (b − b) + a + b = b + (−b + a + b) ⊆ B + A. Thus,
A + B ⊆ B + A. Similarly, we can prove B + A ⊆ A + B. ¤

Lemma 2.21. Let (R, +, ·) be a hypernear ring and A,B be hyperideals of R. Then
A + B is a hyperideal of R.

Proof. Let a + b, a1 + b1 ∈ A + B and r, s ∈ R. (1) We have a + b − (a1 + b1) =
a+b−b1−a1 ⊆ a+b−b1−a+a−a1 = (a+b−b1−a)+a−a1 ⊆ B+A = A+B. (2)
r ·(a+b) = r ·a+r ·b ⊆ A+B. (3) −r+a+b+r ⊆ (−r+a+r)+(−r+b+r) ⊆ A+B.
(4) (r + (a + b)) · s − r · s = ((r + a) + b) · s − r · s = (

⋃
t∈r+a t + b) · s − r · s ⊆⋃

t∈r+a[(t + b) · s− t · s + t · s− r · s] ⊆ ⋃
t∈r+a[(t + b) · s− t · s] + ⋃

t∈r+a t · s− r · s.
But

⋃
t∈r+a t− r · s = (r + a) · s− r · s ⊆ A and

⋃
t∈r+a[(t + b) · s− t · s] ⊆ B. Thus,

(r + (a + b)) · s− r · s = ((r + a) + b) · s− r · s ⊆ B + A = A + B. ¤

Corollary 2.22. Let (R, +, ·) be a hypernear ring and Ai be a hyperideal of R. Then∑n
i=1 Ai is a hyperideal of R.

Proof. The proof follows from Lemma 2.21 and using induction. ¤

3. Isomorphism Theorems in Hypernear Rings

In this section, we study some properties of hypernear ring homomorphism, define
the factor hypernear ring, and derive the three isomorphism theorems in hypernear
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rings. The results in this section can be considered as a generalization for near rings
[1] and for Krasner hyperrings as well [4].

Lemma 3.1. Let (R, +, ·) be a hypernear ring, r ∈ R, and I a hyperideal of R.
Then

(1) I + I = I;
(2) r + I = I if and only if r ∈ I.

Proof. The proof of 1 is trivial, we prove 2.
Let r ∈ I. Having 0 ∈ I implies that r = r + 0 ∈ r + I. Thus, I ⊆ r + I. The
latter and having r + I ⊆ I implies that r + I = I. Conversely, let r + I = I. Then
r + 0 ∈ r + I = I. ¤

Lemma 3.2. Let (R, +, ·) be a hypernear ring, r, s ∈ R, and I a hyperideal of R.
Then

(1) (r + I) + (s + I) = (r + s) + I;
(2) (r + I) · (s + I) + I = (r · s) + I.

Proof. Let r, s ∈ R.
(1): Having

(r + I) + (s + I) =
⋃

a,b∈I

(r + a) + (s + b) ⊆ ⋃
a,b∈I

(r + s− s + a + s + b)

and −s+ a+ s ⊆ I implies that (r + I)+ (s+ I) ⊆ r + s+ I. On the other hand, we
have (r+s)+I = (r+0)+(s+I) ⊆ (r+I)+(s+I). Thus, (r+I)+(s+I) = (r+s)+I.

(2): Having

(r + I) · (s + I) + I =
⋃

a,b∈I

(r + a) · (s + b) + I =
⋃

a,b∈I

(r + a) · s + (r + a) · b + I

and that b ∈ I implies that (r+I) ·(s+I)+I ⊆ ⋃
a∈I(r ·s−r ·s+(r+a) ·s)+I. The

latter and having −r · s+(r + a) · s ⊆ I implies that (r + I) · (s+ I)+ I ⊆ (r · s)+ I.
On the other hand, we have (r · s)+ I = (r +0) · (s+0)+ I ⊆ (r + I) · (s+ I)+ I ¤

Lemma 3.3. Let (R, +, ·) be a hypernear ring, I a hyperideal of R and r, s ∈ R.
Then r + I = s + I if and only if (−s + r) ∩ I 6= ∅.
Proof. Let r + I = s + I. Then there exist i ∈ I such that r ∈ s + i. The latter
implies that i ∈ −s + r. Thus, −s + r ∩ I 6= ∅.

Let −s + r ∩ I 6= ∅. Then there exists i ∈ I such that i ∈ −s + r. The latter
implies that −s ∈ i− r and r ∈ i+ s. Hence, s ∈ r− i ⊆ r + I and r ∈ I + s = s+ I.
The latter implies that r + I = s + I. ¤
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Let (R, +, ·) be a hypernear ring and I a hyperideal of R. We define (R/I,⊕,¯)
as follows: For all r, s ∈ R,

(r + I)⊕ (s + I) = (r + s) + I and (r + I)¯ (s + I) = (r · s) + I.

Lemma 3.4. Let (R, +, ·) be a hypernear ring and I a hyperideal of R. Then the
hyperoperation “⊕” and the operation “¯” are well defined.

Proof. Lemma 3.2 asserts that the hyperoperation “⊕” and the operation “¯” are
well defined. ¤

Theorem 3.5. Let (R, +, ·) be a hypernear ring and I a hyperideal of R. Then
(R/I,⊕,¯) is a hypernear ring and it is called the factor hypernear ring.

Proof. Using Lemma 3.1 and Lemma 3.2, we can easily see that (R/I,⊕,¯) is a
hypernear ring with I as a zero and −(r + I) = −r + I for all r ∈ R. ¤

Proposition 3.6. Let (R, +, ·), (S, +1, ·1) be hypernear rings and f : R → S be a
hypernear ring homomorphism. Then f is one-to-one if and only if Ker(f) = {0}.

Proof. Let f be a one-to-one hypernear ring homomorphism and x ∈ Ker(f). Then
f(x) = 0 = f(0). The latter implies that x = 0 and hence, Ker(f) = {0}.

Let Ker(f) = {0} and x, y ∈ R such that f(x) = f(y). Then by using Proposition
2.11 we get that 0 ∈ −f(x) + f(x) = −f(x) + f(y) = f(−x + y). The latter implies
that there exists t ∈ −x + y such that f(t) = 0. Having Ker(f) = {0} implies that
t = 0. We get now that 0 ∈ −x + y. Thus, y = −(−x) = x. ¤

Proposition 3.7. Let (R, +, ·), (S, +1, ·1) be hypernear rings and f : R → S be a
hypernear ring homomorphism. Then Ker(f) is a subhypernear ring of R.

Proof. The proof is straightforward. ¤

Proposition 3.8. Let (R, +, ·), (S, +1, ·1) be hypernear rings and f : R → S be a
hypernear ring homomorphism. Then f(R) is a subhypernear ring of S.

Proof. The proof is straightforward. ¤

Proposition 3.9. Let (R, +, ·), (S, +1, ·1) be hypernear rings and f : R → S be a
surjective hypernear ring homomorphism.

(1) If R is zero-symmetric then S is zero-symmetric.
(2) If R is unitary then S is unitary.
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(3) If R is a hypernear field then S is a hypernear field.

Proof. The proof is straightforward. ¤

Lemma 3.10. Let (R, +, ·) be a hypernear ring. Then every hyperideal of R is a
kernel of a hypernear ring homomorphism.

Proof. Let I be a hyperideal of R and f : R → R/I be defined by f(r) = r + I

for all r ∈ R. We prove that f is a hypernear ring homomorphism. (1) f is well
defined. Let r = s. Having 0 ∈ (−r + s) ∩ I implies that r + I = s + I (by Lemma
3.3). Thus f(r) = f(s). (2) f(r + s) = (r + s) + I = (r + I)⊕ (s + I) = f(r)⊕ f(s).
(3) f(r · s) = (r · s) + I = (r + I) ¯ (s + I) = f(r)¯ f(s). Lemma 3.1 asserts that
Ker(f) = {r ∈ R : r + I = I} = I. This completes the proof. ¤

Theorem 3.11. (First Isomorphism Theorem) Let (R, +, ·), (S, +1, ·1) be hy-
pernear rings and f : R → S be a surjective hypernear ring homomorphism. If
Ker(f) is a hyperideal of R then R/Ker(f) ∼= S.

Proof. Let φ : R/Ker(f) → S be defined as φ(r +Ker(f)) = f(r). We prove that φ

is a hypernear ring isomorphism. (1) φ is well defined: Let r+Ker(f) = s+Ker(f).
Lemma 3.3 asserts that (−r+s)∩Ker(f) 6= ∅. The latter implies that there exists x ∈
−r+s such that f(x) = 0. We get now that 0 = f(x) ∈ f(−r+s) = −f(r)+f(s) (By
Proposition 2.11). The latter implies that f(r) = f(s) and hence, φ(r + Ker(f)) =
φ(s+Ker(f)). (2) φ((r+Ker(f))⊕(s+Ker(f))) = φ((r+s)+Ker(f)) = f(r+s) =
f(r)+f(s) = φ(r +Ker(f))+φ(s+Ker(f)). (3) φ((r +Ker(f))¯ (s+Ker(f))) =
φ((r · s) + Ker(f)) = f(r · s) = f(r) · f(s) = φ(r + Ker(f)) ·φ(s + Ker(f)). (4) It is
clear that φ is surjective. (5) Let φ(r+Ker(f)) = φ(s+Ker(f)). Then f(r) = f(s).
The latter implies that 0 ∈ −f(s) + f(r) = f(−s + r). We get now that there exists
t ∈ −s + r such that f(t) = 0. The latter implies that t ∈ (−s + r)∩Ker(f). Thus,
r + Ker(f) = s + Ker(f). ¤

Theorem 3.12. (Second Isomorphism Theorem) Let (R, +, ·) be a hypernear
ring and A,B be hyperideals of R. Then (A + B)/B ∼= A/(A ∩B).

Proof. Let f : A → (A + B)/B be defined as f(x) = x + B for all x ∈ A. We prove
that f is a surjective hypernear ring homomorphism. (1) f is well defined. Let x =
y ∈ A. Having 0 ∈ (x−y)∩B implies that x+B = y+B. (2) f(x+y) = x+y+B =
x+B⊕ y +B = f(x)⊕ f(y). (3) f(x · y) = x · y +B = x+B¯ y +B = f(x)¯ f(y).
(4) It is clear that f is surjective. Also, Ker(f) = {a ∈ A : a + B = B} = A ∩ B.
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Since Ker(f) is a hyperideal of A, it follows by using the first isomorphism theorem
that A/(A ∩B) ∼= (A + B)/B. ¤

Lemma 3.13. Let (R, +, ·) be a hypernear ring and I, J be hyperideals of R with
J ⊆ I. Then I/J is a hyperideal of R/J .

Proof. Let i1 + J, i2 + J ∈ I/J and r + J, s + J ∈ R/J . (1) Having I a hyperideal of
R and −i1 + J ⊕ i2 + J = (−i1 + i2) + J implies that −i1 + J ⊕ i2 + J ⊆ I/J . (2)
(r+J)¯(i1+J) = r·i1+J ∈ I/J . (3) −r+J⊕i1+J⊕r+J = (−r+i1+r)+J ⊆ I/J .
−(r +J)(s+J)⊕ (r +J ⊕ i1 +J)(s+J) = −r · s+(r + i1) · s+J ⊆ I/J . Therefore,
I/J is a hyperideal of R/J . ¤

Theorem 3.14. (Third Isomorphism Theorem) Let (R, +, ·) be hypernear ring
and I, J be hyperideals of R with J ⊆ I. Then (R/J)/(I/J) ∼= R/I.

Proof. Let f : R/J → R/I be defined as f(r+J) = r+I for all r ∈ R. We prove that
f is surjective hypernear ring homomorphism. (1) f is well defined. Let r+J = s+J .
Then r−s∩J 6= ∅. Having J ⊆ I implies that ∅ 6= (r−s)∩J ⊆ (r−s)∩I. Thus, r+I =
s+I. (2) f(r+J⊕s+J) = f(r+s+J) = r+s+I = r+I⊕s+I = f(r+J)⊕f(s+J).
(3) f(r + J ¯ s + J) = f(r · s + J) = r · s + I = r + I ¯ s + I = f(r + J)¯ f(s + J).
(4) It is clear that f is surjective. Ker(f) = {r + J ∈ R/J : r + I = I} = I/J .
Since Ker(f) is a hyperideal of R/J (by Lemma 3.13), it follows by using the first
isomorphism theorem that (R/J)/(I/J) ∼= R/I. ¤

4. Chinese Remainder Theorem in Hypernear Rings

In this section, we derive Chinese Remainder Theorem in hypernear rings. First,
we prove the existence of a solution when the system consists of two equations. Then
we generalize it to n equations. Moreover, we apply Chinese Remainder Theorem
to near rings and to rings (that are not necessary commutative).

Let (R, +, ·) be hypernear ring, I be a hyperideal of R, and x, y ∈ R. We write
x ≡ y (mod I) if and only if (x− y) ∩ I 6= ∅.

Lemma 4.1. Let (R, +, ·) be a hypernear ring, I be a hyperideal of R, and x, y, z ∈
R. If x ≡ y (mod I) and y ≡ z (mod I) then x ≡ z (mod I).

Proof. Let x ≡ y (mod I) and y ≡ z (mod I). Then x− y∩ I 6= ∅ and y− z ∩ I 6= ∅.
The latter implies that there exist a, b ∈ I such that a ∈ x−y and b ∈ y− z. We get
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now that x ∈ a+y and −z ∈ −y+b. The latter implies that −z+x ⊆ −y+b+a+y.
Since, b + a ⊆ I, it follows −y + b + a + y ⊆ I. Thus, (−z + x) ∩ I 6= ∅ and hence,
x ≡ z (mod I). ¤

Lemma 4.2. Let (R, +, ·) be a hypernear ring, I be a hyperideal of R, and x, y, z ∈
R. Then the relation “≡” defined as:

x ≡ y (mod I) if and only if (x− y) ∩ I 6= ∅
is an equivalence relation on R.

Theorem 4.3. Let (R, +, ·) be a unitary hypernear ring, I, J be hyperideals of R

with I + J = R, and a1, a2 ∈ R. Then the system

x ≡ a1 (mod I),
x ≡ a2 (mod J).

has a unique solution (mod I) and (mod J).

Proof. Since 1 ∈ R = I + J , it follows that there exist c2 ∈ I, c1 ∈ J such that
1 ∈ c2 + c1. We get that c2 ∈ 1 − c1 and c1 ∈ −c2 + 1. The latter implies that
1 − c1 ∩ I 6= ∅ and −c2 + 1 ∩ J 6= ∅. Let a ∈ a1 · c1 + a2 · c2. Then a − a2 ⊆
a1 · c1 + a2 · c2− a2 = a1 · c1 + a2 · (c2− 1). Since a1 · c1 ∈ J and a2 · (c2− 1)∩ J 6= ∅
(as −c2 + 1 ∩ J 6= ∅), it follows that a − a2 ∩ J 6= ∅ and hence, a ≡ a2 (mod J).
Moreover, −a1+a ⊆ −a1+a1 ·c1+a2 ·c2 = a1 ·(−1+c1)+a2 ·c2. Since a2 ·c2 ∈ I and
a1 · (−1+c1)∩I 6= ∅ (as (1−c1)∩I 6= ∅), it follows that (−a1 +a)∩I 6= ∅ and hence,
a ≡ a1 (mod I). Thus, a is a solution of the system for every a ∈ a1 · c1 + a2 · c2.
Let b be also a solution for the system. Then

b ≡ a1 (mod I),
b ≡ a2 (mod J).

Having
a ≡ a1 (mod I),
a ≡ a2 (mod J),

implies by applying Lemma 4.1 that

b ≡ a (mod I), b ≡ a (mod J). ¤

Corollary 4.4. Let (R, +, ·) be a unitary hypernear ring and I, J be hyperideals of
R with I + J = R. Then the system

x ≡ 0 (mod I),
x ≡ 0 (mod J),

has a unique solution (mod I ∩ J).
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Proof. Theorem 4.3 asserts that the system has a solution. Let a, b be two solutions
of the system. Then

a ≡ 0 (mod I),
a ≡ 0 (mod J),

and
b ≡ 0 (mod I),
b ≡ 0 (mod J).

It is easy to see that a, b ∈ I ∩ J . Having I ∩ J a hyperideal of R implies that
a− b ⊆ I ∩ J . Thus, a ≡ b (mod I ∩ J). ¤

Corollary 4.5. Let (R, +, ·) be a unitary Krasner hyperring, I, J be hyperideals of
R with I + J = R, and a1, a2 ∈ R. Then the system

x ≡ a1 (mod I),
x ≡ a2 (mod J),

has a unique solution (mod I) and (mod J).

Proof. The proof follows from Theorem 4.3 and the fact that every Krasner hyperring
is a hypernear ring. ¤

Corollary 4.6. Let (R, +, ·) be a unitary near ring, I, J be ideals of R with I +J =
R, and a1, a2 ∈ R. Then the system

x ≡ a1 (mod I),
x ≡ a2 (mod J).

has a unique solution (mod I ∩ J).

Proof. Having that (R, +, ·) is a unitary near ring which implies that it is a unitary
hypernear ring. Theorem 4.3 asserts that the system has a solution. Let a, b be two
solutions of the system. Then

a ≡ a1 (mod I),
a ≡ a2 (mod J),

and
b ≡ a1 (mod I),
b ≡ a2 (mod J).

We get that a − a1, b − a1 ∈ I and a − a2, b − a2 ∈ J . Since I, J are ideals of R, it
follows that a − b = (a − a1) − (b − a1) ∈ I and a − b = (a − a2) − (b − a2) ∈ J .
Thus, a− b ∈ I ∩ J . Therefore, a ≡ b (mod I ∩ J). ¤
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Corollary 4.7. Let (R, +, ·) be a unitary ring (not necessary commutative), I, J be
ideals of R with I + J = R, and a1, a2 ∈ R. Then the system

x ≡ a1 (mod I),
x ≡ a2 (mod J),

has a unique solution (mod I ∩ J).

Proof. The proof follows from Corollary 4.6 and having every ring a near ring. ¤

We present next an application of Chinese Remainder Theorem and First Iso-
morphism Theorem in hypernear rings.

Theorem 4.8. Let (R, +, ·) be a unitary hypernear ring, I, J be hyperideals of R

with I + J = R. Then R/(I ∩ J) ∼= R/I ×R/J .

Proof. Let f : R → R/I ×R/J be defined as f(r) = (r + I, r + J) for all r ∈ R. We
prove that f is surjective hypernear ring homomorphism. (1) f is well defined. Let
r = s. Then 0 ∈ r − s ∩ I and 0 ∈ r − s ∩ J . The latter implies that r + I = s + I

and r + J = s + J . Thus, f(r) = f(s). (2) f(r + s) = (r + s + I, r + s + J) =
(r+I⊕s+I, r+J⊕s+J) = f(r)⊕f(s). (3) f(r·s) = (r·s+I, r·s+J) = ((r+I)¯(s+
I), (r+J)¯(s+J)) = f(r)¯f(s). (4) f is surjective. Let (r+I, s+J) ∈ R/I×R/J .
Theorem 4.3 asserts that there exists a ∈ R such that (a+ I, a+J) = (r + I, s+J).
Thus, f(a) = (r + I, s + J). We have Ker(f) = {r ∈ R : (r + I, r + J) = (I, J)}.
The latter implies that r ≡ 0 (mod I) and r ≡ 0 (mod J). Corollary 4.4 asserts
that r ∈ I ∩ J and hence, Ker(f) ⊆ I ∩ J . If x ∈ I ∩ J then x + I = I, x + J = J .
Thus, x ∈ Ker(f) and hence, I ∩J ⊆ Ker(f). Since Ker(f) = I ∩J is a hyperideal
of R, it follows by the first isomorphism theorem that R/(I ∩ J) ∼= R/I ×R/J . ¤

Theorem 4.9. Let (R, +, ·) be a unitary hypernear ring with (R, +) commutative,
ak ∈ R, Ik be hyperideal of R with IkR ⊆ Ik and Ik + Il = R for all 1 ≤ k 6= l ≤ n.
Then the system

x ≡ ak (mod Ik)

has a unique solution (mod Ik).

Proof. Having 1 ∈ R = I1 + Ik for every k = 2, . . . , n implies that there exist
bk ∈ I1, dk ∈ Ik such that 1 ∈ bk + dk for every k = 1, . . . , n. Since 1 = 1 . . . 1, it
follows that 1 ∈ (b2+d2)(b3+d3) . . . (bn+dn) = [(b2+d2)b3+(b2+d2)d3] . . . (bn+dn).
Having (R, +) commutative implies that (b2 + d2)b3 + (b2 + d2)d3 ⊆ (b2 + d2)b3 +
(d2 + b2)d3 − d2d3 + d2d3 ⊆ I1 + d2d3. We get now that there exists i1 ∈ I1 such
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that 1 ∈ (i + d2d3) . . . (bn + dn). Continuing on this pattern and using the given
that I1R ⊆ I1, we get that 1 ∈ I1 + d2d3 . . . dn. By setting c1 = d2d3 . . . dn ∈ Ik for
all k = 2, . . . , n, we get that c1 ≡ 1 (mod I1) and c1 ≡ 0 (mod Ik) for k = 2, . . . , n.
In a similar manner, we can get ci with ci ≡ 1 (mod Ii) and ci ≡ 0 (mod Ik) for
k = 1, . . . , i−1, i+1, . . . , n. Let a ∈ a1 ·c1+. . .+an ·cn. Since (R, +) is commutative,
it follows that −ai +a ⊆ ai(−1+ ci)+a1 · c1 + . . .+ai−1ci−1 +ai+1ci+1 + . . .+ancn.
It is clear that (−ai + a) ∩ Ii 6= ∅ for all i = 1, . . . , n. Thus, a ≡ ak (mod Ik) for all
k = 1, . . . , n.

Let b be another solution for the system. Then a ≡ ak (mod Ik) and b ≡
ak (mod Ik). Using Lemma 4.2, we get that b ≡ a (mod Ik) for all k = 1, . . . , n. ¤

Corollary 4.10. Let (R, +, ·) be a unitary hypernear ring with (R, +) commutative,
Ik be a hyperideal of R with IkR ⊆ Ik and Ik + Il = R for all 1 ≤ k 6= l ≤ n, and
ak ∈ R. Then the system

x ≡ 0 (mod Ik)

has a unique solution (mod
⋂n

k=1 Ik).

Proof. Theorem 4.9 asserts that the system has a solution. Let a, b be two solutions
of the system. Then

a ≡ 0 (mod Ik)

and
b ≡ 0 (mod Ik).

It is easy to see that a, b ∈ ⋂n
k=1 Ik. Having

⋂n
k=1 Ik a hyperideal of R implies that

a− b ⊆ ⋂n
k=1 Ik. Thus, a ≡ b (mod

⋂n
k=1 Ik). ¤

Corollary 4.11. Let (R, +, ·) be a unitary Krasner hyperring, Ik be a hyperideal of
R and Ik + Il = R for all 1 ≤ k 6= l ≤ n, and ak ∈ R. Then the system

x ≡ ak (mod Ik)

has a unique solution (mod Ik).

Proof. The proof follows for Theorem 4.9 and the fact that every Krasner hyperring
is a hypernear ring. ¤

Corollary 4.12. Let (R, +, ·) be a unitary near ring with (R, +) commutative, Ik

be an ideal of R with IkR ⊆ Ik and Ik + Il = R for all 1 ≤ k 6= l ≤ n, and ak ∈ R.
Then the system

x ≡ ak (mod Ik)
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has a unique solution (mod
⋂n

k=1 Ik).

Proof. We have that (R, +, ·) is a unitary near ring which implies that it is a unitary
hypernear ring. Theorem 4.9 asserts that the system has a solution. Let a, b be two
solutions of the system. Then

a ≡ ak (mod Ik)

and

b ≡ ak (mod Ik)

We get that a − ak, b − ak ∈ Ik for all k = 1, . . . , n. Since Ik is an ideal of R, it
follows that a− b = (a−ak)− (b−ak) ∈ Ik. Thus, a− b ∈ ⋂n

k=1 Ik. Therefore, a ≡ b

(mod
⋂n

k=1 Ik). ¤

Corollary 4.13. Let (R, +, ·) be a unitary ring, Ik be an ideal of R and Ik + Il = R

for all 1 ≤ k 6= l ≤ n, and ak ∈ R. Then the system

x ≡ ak (mod Ik)

has a unique solution (mod
⋂n

k=1 Ik).

Proof. Since every ring is a near ring, the proof follows from Corollary 4.12. ¤

Theorem 4.14. Let (R, +, ·) be a unitary hypernear ring with (R, +) commutative,
Ik be hyperideal of R with IkR ⊆ Ik and Ik + Il = R for all 1 ≤ k 6= l ≤ n. Then

R/
n⋂

k=1

Ik
∼= R/I1 × . . .×R/In.

Proof. The proof is similar to that of Theorem 4.8. ¤

5. Conclusion

Hypernear rings, as a generalization of near rings, grabbed the interest of many
researchers in the field of hyperstructure theory. This paper studied hypernear rings
from theoretical point of view. Several results related to properties of hypernear
rings have been discussed. And main theorems in this subject have been derived.
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