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NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VALUE

INTEGRALS USING A PARAMETRIC RATIONAL

TRANSFORMATION

Beong In Yun

Abstract. For numerical evaluation of Cauchy principal value integrals, we present
a simple rational function with a parameter satisfying some reasonable conditions.
The proposed rational function is employed in coordinate transformation for accel-
erating the accuracy of the Gauss quadrature rule. The efficiency of the proposed
rational transformation method is demonstrated by the numerical result of a selected
test example.

1. Introduction

In this work we consider the numerical evaluation of the Cauchy principal value

(CPV) integral, which is very important for the implementation of numerical schemes

such as boundary element method [1, 2, 3, 4, 5] for solving problems in many areas

of engineering.

Among the well-known methods for numerical evaluation of CPV integrals, we

may notice that the coordinate transformation techniques [6, 7, 8, 9, 10, 11, 12, 13]

are prominent because of their ease of use in the adaptive approach. So, in this

paper, we propose a rational function of a simple form in pursuit of improving the

accuracy of the numerical integration method. Then we examine the usefulness of

the proposed rational transformation method with a selected numerical example.

In the following section, for CPV integrals over an interval [−1, 1], we define

a rational function of type (1, 2) including a parameter that shifts a singular point

−1 < s0 < 1 into the midpoint 0. An appropriate range of the parameter, with which

the rational function is suitable for a coordinate transformation, is derived. The

proposed rational function makes the singular part of the CPV integral disappear
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when an even number of integration points are used. Therefore, efficient evaluation of

the CPV integral can be expected by the proposed rational function with a parameter

selected in the appropriate range.

Based on the Gauss-Legendre quadrature rule, the numerical results of the pro-

posed method for a test example are investigated and compared with those of some

existing transformation methods.

2. Transformation Methods for CPV Integrals

In this section we consider the following Cauchy principal value integral.

(2.1) Kφ(s0) := P.V.

∫ 1

−1

φ(ξ)

ξ − s0
dξ = lim

ǫ→0+

(
∫ s0−ǫ

−1
+

∫ 1

s0+ǫ

)

φ(ξ)

ξ − s0
dξ ,

where 0 ≤ s0 < 1 and φ is a well-behaved function with φ(s0) 6= 0.

To evaluate the CPV integral efficiently, in general, we may use a transformation

h(x), −1 ≤ x ≤ 1, which is an increasing function satisfying

(2.2) h(−1) = −1, h(0) = s0, h(1) = 1 .

By the change of variable ξ = h(x) in the CPV integral (2.1) we have

(2.3)
Kφ(s0) =

∫ 1

−1
{φ(h(x)) − φ(s0)}

h′(x)

h(x) − s0
dx + φ(s0)P.V.

∫ 1

−1

h′(x)

h(x) − s0
dx

= K1 + K2.

We can see that K1 is a regular integral and K2 can be written by

(2.4) K2 = φ(s0)

{

P.V.

∫ 1

−1

c

x
dx +

∫ 1

−1
R(x) dx

}

,

where c is the first non-vanishing derivative of h(x) at x = 0 and R(x) is a bounded

function [11]. If we use a standard Gauss quadrature rule with any even number

of integration points, then the CPV integral in the formula (2.4) vanishes and,

consequently, the transformed CPV integralKφ(s0) can be evaluated very accurately

as mentioned in the literature [1, 2, 11].

2.1. Existing transformations Typical transformations that serve as the afore-

mentioned function h(x) and are known to perform well in practice are given below.

· Doblarè and Gracia transformation [6]:

(2.5) hDG(x) = s0
(

1− x4
)

+ x3, −1 ≤ x ≤ 1.
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· Composite polynomial-sigmoidal transformation [12]:

(2.6) hDG
r (x) = hDG

(

1− 2γr

(

1− x

2

))

, −1 ≤ x ≤ 1 ,

where γr(s), 0 ≤ s ≤ 1, is a sigmoidal transformation of order r ≥ 1.

· Composite rational-polynomial transformation [13]:

(2.7) hYη (x) = f (η; g(η;x)) , −1 ≤ x ≤ 1 ,

where f(η;x) = s0 + (1− s0x)
x−η
1−ηx and g(η;x) = η

(

1− x2
)

+ x for a

parameter η such that η ≥ −1 + 2s0.

In the last part of this section, these transformations will be compared with the

proposed rational transformation.

2.2. A parametric rational transformation For a given 0 ≤ s0 < 1 and for a

parameter α > 0 we set a simple rational function of type (1,2),

(2.8) hα(x) =
x+ d

ax2 + bx+ c
, −1 ≤ x ≤ 1 ,

with a derivative

(2.9) hα
′(x) = −

ax2 + 2adx+ (bd− c)

(ax2 + bx+ c)2
.

The function hα implicitly includes the parameter α because the coefficients a, b, c

and d will be associated with α as we can see bellow.

Considering the conditions in (2.2) and an additional condition of the derivative

at x = 0,

(2.10) hα
′(0) = α ,

we have

(2.11) a = 1− c, b = d = s0c, c =
1

s20 + α
.

Thus hα and its derivative can be written by

(2.12) hα(x) =

(

s20 + α
)

x+ s0
(

s20 + α− 1
)

x2 + s0x+ 1

and

(2.13) hα
′(x) =

(

s20 + α
) (

1− s20 − α
)

x2 + 2s0
(

1− s20 − α
)

x+ α
{(

s20 + α− 1
)

x2 + s0x+ 1
}2 .
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Lemma 2.1. For 0 < s0 < 1 given, the function hα(x) is increasing over the interval

−1 ≤ x ≤ 1 for any parameter α satisfying

(2.14) s0 − s20 ≤ α ≤ 2− s0 − s20.

Proof. Rewrite the formula of hα
′ in (2.13) as

hα
′(x) =

H(x)
{(

s20 + α− 1
)

x2 + s0x+ 1
}2 .

Then

H(x) =
(

s20 + α
) (

1− s20 − α
)

x2 + 2s0
(

1− s20 − α
)

x+ α

=
(

s20 + α
) (

1− s20 − α
)

{

x+
s0

s20 + α

}2

+

(

α− s0 + s20
) (

α+ s0 + s20
)

s20 + α
.

When 1 − s20 − α ≥ 0, we have H(x) ≥ 0(that is, h′α(x) ≥ 0) for all α satisfying

α− s0 + s20 ≥ 0. That is, hα(x) is increasing over the interval [−1, 1] for all α such

that

s0 − s20 ≤ α ≤ 1− s20.

When 1− s20 − α < 0, the minimum of H is

H(1) =
(

s20 + α
) (

1− s20 − α
)

+ 2s0
(

1− s20 − α
)

+ α

= −
{

α2 − 2
(

1− s0 − s20
)

α−
(

1− s20
) (

2s0 + s20
)}

= −
{

α+ s0 + s20
} {

α− 2 + s0 + s20
}

.

Thus we have h′α(x) ≥ 0 for all α satisfying α − 2 + s0 + s20 ≤ 0. That is, hα(x) is

increasing over the interval [−1, 1] for all α such that

1− s20 < α ≤ 2− s0 − s20.

As a result, we can say that the function hα(x) is increasing over the interval [−1, 1]

for all α contained in the interval

s0 − s20 ≤ α ≤ 2− s0 − s20,

which completes the proof. �

This lemma shows the appropriate range of the parameter α with which hα(x)

becomes a bijective map from [−1, 1] onto itself. That is, the rational function

hα(x) with the parameter α satisfying the condition (2.14) can be used for a suitable

coordinate transformation ξ = hα(x) in numerical evaluation of the CPV integral.

For a special case of s0 = 0, if we set

(2.15) h0,α(x) :=
αx

(α− 1) x2 + 1
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from (2.12), then it can be seen that h0,α(x) is strictly increasing over the interval

[−1, 1] for any parameter 0 < α ≤ 2 and it satisfies

h0,α
′(1) = h0,α

′(−1) =
2− α

α

and

h0,α(x) + h0,α(−x) = 0

for all−1 ≤ x ≤ 1. It should be noted that h0,2(x) =
2x

x2+1
and g(t) := 1

2 (h0,2(2t− 1) + 1),

0 ≤ t ≤ 1, becomes a sigmoidal transformation of order 2 based on the definition in

the literature [7].

For comprehension, graphs of hα in the case of s0 = 0.75, for example, are given

in Figure 1(a) and those of h0,α are given in Figure 1(b).

-1

 0

 0.75

 1

-1  0  1

(x)

α=0.2

α=0.6

-1

 0

 1

-1  0  1

(x)

α=0.5

α=2

(a) s0 = 0.75 (b) s0 = 0

Figure 1: Graphs of hα(x) for s0 = 0.75 with α = 0.2, 0.6 in (a) and s0 = 0 with
α = 0.5, 2 in (b).

3. A Numerical Example

We take a test example Kφ (s0) with φ(x) = 1 + x, that is,

Kφ (s0) = P.V.

∫ 1

−1

1 + ξ

ξ − s0
dξ = 2 + (1 + s0) log

1− s0

1 + s0
.

Table 1 includes optimal value of α, denoted by α∗, for each s0 fixed which results

in the best error among the used values of α of the step-size 0.01 in numerical

experiments using the N -point Gauss-Legendre quadrature rule with N = 40. In

fact, we can identify that the optimal value α∗ changes little with respect to the



352 Beong In Yun

number of integration points, N . For the data of α∗ given in Table 1, we have the

least square approximation by the Marquardt-Levenberg algorithm as follows.

(3.1) B(s) = 0.01558 + 1.31324(1 − s)1/2 − 0.25039(1 − s), 0 ≤ s < 1.

Table 1. Optimal values of α experimentally obtained for each
s0 (N = 40).

s0 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.995 0.999
α∗ 0.97 0.95 0.88 0.85 0.75 0.65 0.53 0.40 0.31 0.15 0.11 0.05

For s0 = 0.2, 0.4, 0.6, 0.8, numerical results based on the presented transforma-

tion hα are given in Table 2. Therein, the value of the parameter α is chosen by

α = B(s0) for each s0. For comparison, the table also includes numerical results

associated with Doblaré and Gracia transformation hDG given in (2.5).

Table 2. Relative errors of the N -point Gauss-Legendre quadrature
rule associated with the presented transformation hα with α = B(s0)
and the Doblaré-Gracia transformation hDG for the CPV integral
Kφ(s0), 0 < s0 < 1.

Existing transformation Presented transformation
s0 N hDG hα α

4 5.2 × 10−9 4.9× 10−8

0.2 12 6.3× 10−25 1.6 × 10−24 0.9899
20 7.5× 10−41 2.7 × 10−41

4 7.6 × 10−6 1.4× 10−6

0.4 12 1.0× 10−16 4.6 × 10−23 0.8826
20 1.3× 10−27 2.6 × 10−37

4 2.2 × 10−3 9.1× 10−5

0.6 12 5.3× 10−11 1.4 × 10−16 0.7460
20 1.2× 10−18 8.9 × 10−29

4 1.0 × 10−2 1.7× 10−4

0.8 12 1.7 × 10−7 2.7 × 10−14 0.5528
20 2.6× 10−12 2.8 × 10−25

On the other hand, for s0 = 0.9, 0.95, 0.99, 0.995 near the end-point x = 1,

numerical results of hα are given in Table 3. It also includes numerical results of
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Table 3. Relative errors of the N -point Gauss-Legendre quadrature
rule associated with the presented transformation hα with α = B(s0)
and the composite transformation hDG

3 for the CPV integral Kφ(s0),
with s0’s near the end-point x = 1.

Existing transformation Presented transformation
s0 N hDG

3 hα α

20 1.4× 10−8 4.0 × 10−23

0.9 30 7.6× 10−13 3.8 × 10−35 0.4058
40 3.6× 10−17 2.1 × 10−47

20 1.3× 10−7 7.3 × 10−17

0.95 30 2.1× 10−11 1.5 × 10−25 0.2967
40 1.9× 10−15 2.7 × 10−34

20 6.5× 10−6 3.2 × 10−10

0.99 30 1.4× 10−8 2.8 × 10−15 0.1444
40 3.4× 10−12 2.0 × 10−20

20 2.9× 10−5 7.2× 10−9

0.995 30 1.2× 10−7 2.0 × 10−13 0.1072
40 4.7× 10−10 2.1 × 10−17

 1x10
-50

 1x10
-40

 1x10
-30

 1x10
-20

 1x10
-10

 1

 0.2  0.4  0.6  0.8  0.9

(s0)

hα

h
DG

hη
Y

 1x10
-50

 1x10
-40

 1x10
-30

 1x10
-20

 1x10
-10

 1

 0.91  0.95  0.99  1

(s0)

hα

h3
DG

hη
Y

(a) 0.2 ≤ s0 ≤ 0.9 (N = 20) (b) 0.9 < s0 < 1 (N = 40)

Figure 2: Relative errors of hα, h
DG and hY

η
for 0.2 ≤ s0 ≤ 0.9 in (a) and those of hα,

hDG
3 and hY

η
for 0.9 < s0 < 1 in (b).

the existing composite transformation hDG
3 , given in (2.6), associated with the Sidi-

sigmoidal transformation of order 3 [7]. In the numerical experiment we can find

that hDG
3 results in better errors than hDG

r of any order r 6= 3. Both Table 2 and
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Table 3 show the superiority of the proposed transformation h[α] with α = B(s0)

over the compared existing transformations.

Figure 2 illustrates the tendency of the relative errors of the proposed transfor-

mation hα, compared with those of the existing transformations hDG, hDG
3 and hYη

for 0.2 ≤ s0 ≤ 0.9 in (a) and 0.9 < s0 < 1 in (b). The parameter in hYη was chosen

as η = 1
3s0 in (a) and η = 12 in (b), referring to the literature [13]. From the figure

we can see that the proposed transformation hα is available for all 0 < s0 < 1 and

the superiority over the compared existing transformations is evident over the range

0.9 < s0 < 1.
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