DOI QR코드

DOI QR Code

순환여과 양식시스템 내 무지개송어(Oncorhynchus mykiss)의 적정 용존산소 농도평가

Evaluation of the optimal dissolved oxygen level for rainbow trout (Oncorhynchus mykiss) in the recirculating aquaculture system

  • 박근홍 (부경대학교 대학원 수산생물학과) ;
  • 최진서 (부경대학교 양식응용생명과학전공) ;
  • 이영훈 (부경대학교 대학원 수산생물학과) ;
  • 박정환 (부경대학교 양식응용생명과학전공)
  • Kunhong PARK (Department of Fisheries Biology, Pukyong National University) ;
  • Jinseo CHOI (Department of Aquaculture and applied Life Sciences, National University) ;
  • Younghun LEE (Department of Fisheries Biology, Pukyong National University) ;
  • Jeonghwan PARK (Department of Aquaculture and applied Life Sciences, National University)
  • 투고 : 2023.10.31
  • 심사 : 2023.11.23
  • 발행 : 2023.11.30

초록

Conventional aquaculture faces declining productivity, shifting to recirculating aquaculture system (RAS), known for minimizing water usage and maintaining consistent water temperatures for year-round fish growth. Rainbow trout (Oncorhynchus mykiss), a globally important cold-water species and the third most farmed fish in inland waters of Korea, valued for its fecundity and rapid growth. Dissolved oxygen, an important environmental factor affecting fish production and economics, highlights the need for smart aquaculture practices. Since 2018, the rise of intelligent aquaculture platforms, incorporating information and communications technology (ICT), emphasizes the essential role of RAS implementation. This eight-week study aimed to determine the optimal dissolved oxygen concentration for rainbow trout in RAS, utilizing a device for continuous monitoring, control and record. Dissolved oxygen concentrations were set at 5-6 mg/L, 9-10 mg/L, 14-15 mg/L and 17-18 mg/L. The growth rate significantly decreased at 5-6 mg/L, with no significant differences in other experimental groups. In hematological analysis, growth hormone (GH) was significantly highest at 5-6 mg/L, followed by 9-10 mg/L while Insulin-like growth factor-1 (IGF-1) was significantly lowest at 5-6 mg/L. In conclusion, the optimal dissolved oxygen concentration for rainbow trout in RAS is approximately 9-10 mg/L. Higher concentrations do not contribute to further growth or profitability.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원(IITP)의 지원을 받아 수행된 연구임(No.2021-0-00225, 최적의 수산 양식 설계·운영을 위한 디지털 아쿠아 트윈 핵심 플랫폼 기술 개발).

참고문헌

  1. Aksakal E and Ekinci D. 2021. Effects of hypoxia and hyperoxia on growth parameters and transcription levels of growth, immune system and stress related genes in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology, Part A, 262. https://doi.org/10.1016/j.cbpa.2021.111060.
  2. Behnke RJ. 1992. Native trout of Western North America. American Fisheries Society, Bethesda Marryland, U.S.A., 1-275.
  3. Brett JR and Groves DD. 1979. Physiological energetics. In: Hoar WS, Randall DJ and Brett JR, Eds. Fish Physiology, VIII. Academic Press, New York, U.S.A., 280-352. 
  4. Buentello, JA, Gatlin I and Neill DM. 2000. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture 182, 339-352. https://doi.org/10/1016/S0044-8486(99)00274-4.  10/1016/S0044-8486(99)00274-4
  5. Caldwell CA and Hinshaw J. 1994. Physiological and haematological responses in rainbow trout (Oncorhynchus mykiss) subjected to supplemental oxygen in fish culture. Aquaculture 126, 183-193. https://doi.org/10.1016/0044-8486(94)90259-3. 
  6. Cameron JN. 1971. Oxygen dissociation characteristics of the blood of the rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology 38A, 699-704. https://doi.org/10.1016/0300-9629(71)90136-8. 
  7. Davbidson J, C Good, C Welsh and ST Summerfelt. 2014. Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout (Oncorhynchus mykiss) within water recirculating aquaculture systems. Aquaculture Engineering 59, 30-40. https://doi.org/10.1016/j.aquaeng.2014.01.003. 
  8. Doudoroff P and Shumway DL. 1970. Dissolved oxygen requirements of freshwater fishes. Food and Agricultural Organization of the United Nations Technical Paper 86, 291. 
  9. Edsall DA and Smith CE. 1990. Performance of rainbow trout and Snake River cutthroat trout reared in oxygensupersaturated water. Aquaculture 90, 251-259. http://doi.org/10.1016/0044-8486(90)90249-M. 
  10. Ekau W, Auel H, Portner H-O and Gilbert D. 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669. https://doi.org/10.5194/bg-7-1669-2010. 
  11. Erez J, Krom MD and Neuwirth T. 1990. Daily oxygen variations in marine fish ponds, Elat, Israel. Aquaculture 84, 289-305. https://doi.org/10.1016/0044-8486(90)90094-4. 
  12. Fisheries Information Portal System (FIPS). 2023. Fisheries Statistics in fisheries information service. Retrieved from https://fips.go.kr/p/S020702/#. Accessed Jan 2023. 
  13. Fischer RJ. 1963. Influence of oxygen concentration and of its diurnal fluctuations on the growth of juvenile Coho Salmon. Masters of science thesis. Oregon State University. Corvallis, Oregon, 48. 
  14. Foss A, Evensen TH and Oiestad V. 2002. Effects of hypoxia and growth and food conversion efficiency in the spotted wolffish Anarhichas minor (Olafsen). Aquaculture 33, 437-444. https://doi.org/10.1046/j.1365-2109.2002.00693.x. 
  15. Gabillard JC, Weil C, Rescan PY, Navarro I, Guti ́errez J and Le Bail PY. 2003. Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology 133, 233-242. https://doi.org/10.1016/S0016-6480(03)00167-9. 
  16. Han JD and Kim HY. 2016. Changes in repiratory metabolism and blood chemistry of olive flounder (Paralichthys olivaceus) exposed to hypoxia. KFAS 49, 45-52. https:// doi.org/10.5657/KFAS.2016.0045. 
  17. Herrmann RB, Warren CE and Doudoroff P. 1962. Influence of oxygen concentration on the growth of juvenile Coho Salmon. Transactions of the American Fisheries Society 91. 155-167. https://doi.org/10.1577/1548-8659(1962)91[155:IOOCOT]2.0.CO;2. 
  18. Itazawa Y. 1970. Characteristics of respiration of fish considered from the arterio-venous difference of oxygen content. Bull Jap Soc Sci Fish 36, 571-577. https://doi.org/10.2331/suisan.36.571. 
  19. Itazawa Y and I Hanyu. 1991. Fish physiology. KoseishaKoseikaku, Tokyo, Japan, 621.
  20. Jobling M. 1995. Environmental biology of fishes. Chapman and hall fish and fisheries series 16. Volume 76, Issues 1, 266. https://doi.org/10.1017/S0025315400029313. 
  21. Kawamoto N. 1977. Fish physiology. Koseisha-Koseikaku, Tokyo, Japan, 605. 
  22. Kim YM, Lee MS and Chung YH. 2013. The residues of antibiotics (tetracycline, oxolinic acid and ciplofloxacin) and malachite green in cultured rainbow trout (Oncorhynchus mykiss). JFMSE 25, 828-835. https://doi.org/10.13000/JFMSE.2013.25.4.828. 
  23. Korea Maritime Institute (KMI). 2022. Fisheries observation center. Inland waters trout report (December 2022), 2. 
  24. Lee NS. 2013. The trend and prospect of seawater aquaculture of trout in Korea. Aqua Info 7, 40-53. 
  25. Miller D, Poucher S and Coiro L. 2002. Determination of lethal dissolved oxygen levels for selected marine and estuarine fishes, crustaceans and a bivalve. Mar Biol 140, 287-296. https://doi.org/10.1007/s002270100702. 
  26. Min BH, Park MS, Myeong JI and Hwang HK. 2013. Physiological stress responses in black seabream (Acanthopagrus schlegelii). KFAS 46, 819-826. http://doi.org/10.5657/KFAS.2013.0819. 
  27. Ministry of Oceans and Fisheries (MOF). 2018. Seawater process testing standards, 51-54. 
  28. National Assembly Research Service (NARS). 2019. Current status and future tasks of the smart aquaculture industry, 2-9. 
  29. National Institute of Fisheries Science (NIFS). 2017. Rainbow trout aquaculture standard manual, 16. 
  30. Paek JY and Park KI. 2016. An economic analysis of rainbow trout (Onchorhynchus mykis) aquaculture farms. JFMSE 28, 1280-1289. https://doi.org/10.13000/JFMSE.2016.28.5.1280. 
  31. Papoutsoglou SE and Tziha G. 1996. Blue tilapia (Oreochromis aureus) growth rate in relation to dissolved oxygen concentration under recirculated water conditions. Aquacultural Engineering 15, 181-192. https://doi.org/10.1016/0144-8609(95)00013-5. 
  32. Park Jh, Kim PK and Jo JY. 2008. Growth performance of disk abalone (Haliotis discus hannai) in pilot- and commercial-scale recirculating aquaculture systems. Aquaculture Int 16, 191-202. https://doi.org/10.1016/j.aquaeng.2008.02.001. 
  33. Person-Le RJ, Pichavant K, Vacher C, Bayon N L, Severe A and Boeuf G. 2002. Effects of O2 supersaturation on metabolism and growth in juvenile turbot (Scophthalmus maximus L.). Aquaculture 205(3-4), 373-383. https://doi.org/10.1016/S0044-8486(01)00689-5. 
  34. Peterson BC and Waldbieser GC. 2009. Effects of fasting on IGF-I, IGF-II, and IGF-binding protein mRNA concentrations in channel catfish (Ictalurus punctatus). Domestic Animal Endocrinology 37, 74-83. https://doi.org/10.1016/j.domaniend.2009.03.004. 
  35. Poon WL, Hung CY and Randall DJ. 2001. The effect of aquatic hypoxia on fish. In: Proceedings of the sixth international symposium on fish physiology, toxicology and water quality. Thurston RV, eds. Ecosystems Research Division, Georgia, 31-49. 
  36. Reinecke M. 2010. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-1 system. Journal of fish biology 76, 1233-1254. https://doi.org/10.1111/j.1095-8649.2010.02605.x. 
  37. Salas-Leiton, E, Canovas-Conesa, B, Zerolo, R, Lopez-Barea, J, Canavate, JP and Alhama, J. 2009. Proteomics of juvenile Senegal Sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. Marine Biotechnology. 11, 473-487. http://doi.org/10.1007/s10126-008-9168-8. 
  38. Schram E, Roques JAC, Abbink W, Yokohama Y, Spanings T, Vries PD, Bierman S, Vis HVD and Flik G. 2014. The impact of elevated water nitrate concentration on physiology, growth and feed intake of African catfish (Clarias gariepinus) (Burchell 1822). Aquaculture Res 45, 1499-1511. https://doi.org/10.1111/are.12098. 
  39. Shimizu M, Cooper KA, Dickhoff WW and Beckman BR. 2009. Postprandial changes in plasma growth hormone, insulin, insulin-like growth factor (IGF)-I, and IGF-binding proteins in coho salmon fasted for varying periods. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 297, 352-361. https://doi.org/10.1152/ajpregu.90939.2008. 
  40. Summerfelt ST, Vinci BJ. 2008. Better management practices for recirculating aquaculture systems. Environmental best management practices for aquaculture. Blackwell publishing, Ames, IA, 389-426. https://doi.org/10.1002/9780813818672.ch10. 
  41. Sumpter JP, Bail PY Le, Pickering AD, Pottinger TG and Carragher JF. 1991. The effect of starvation on growth and plasma growth hormone concentrations of rainbow trout (Oncorhynchus mykiss). General and comparative endocrinology 83, 94-102. https://doi.org/10.1016/0016-6480(91)90109-J. 
  42. Thetmeyer, H, Waller, U, Black, KD, Inselmann, S and Rosenthal, H. 1999. Growth of European sea bass (Dicentrarchus labrax L.) under hypoxic and oscillating oxygen conditions. Aquaculture 174, 355-367. https://doi.org/10.1016/S0044-8486(99)00028-9. 
  43. Weithman AS and Haas MA. 1984. Effects of dissolvedoxygen depletion on the rainbow trout fishery in Lake Taneycomo, Missouri. Transactions of the American Fisheries Society 113, 109-124. https://doi.org/10.1577/1548-8659(1984)113<109:EODDOT>2.0.CO;2. 
  44. Yamamoto K, Itazawa Y, and Kobayashi H. 1985. Direct observations of fish spleen by an abdominal window method and its application to exercised and hypoxic yellowtail. Jap J Ich- thyol 31, 427-433. https://doi.org/10.11369/jji1950.31.427. 
  45. Yovita JM. 2007. The effects of dissolved oxygen on fish growth in aquaculture. Kingolwira National Fish Farming Centre, Fisheries Division. Ministry of Natural Resources and Tourism, Tanzania, 30.