DOI QR코드

DOI QR Code

Assessment of soil moisture-vegetation-carbon flux relationship for agricultural drought using optical multispectral sensor

다중분광광학센서를 활용한 농업가뭄의 토양수분-식생-이산화탄소 플럭스 관계 분석

  • Sur, Chanyang (National Agricultural Water Research Center, Hankyong National University) ;
  • Nam, Won-Hob (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University)
  • 서찬양 (한경국립대학교 국가농업용수연구센터) ;
  • 남원호 (한경국립대학교 사회안전시스템공학부)
  • Received : 2023.09.07
  • Accepted : 2023.10.19
  • Published : 2023.11.30

Abstract

Agricultural drought is triggered by a depletion of moisture content in the soil, which hinders photosynthesis and thus increases carbon dioxide (CO2) concentrations in the atmosphere. The aim of this study is to analyze the relationship between soil moisture (SM) and vegetation activity toward quantifying CO2 concentration in the atmosphere. To this end, the MODerate resolution imaging spectroradiometer (MODIS), an optical multispectral sensor, was used to evaluate two regions in South Korea for validation. Vegetation activity was analyzed through MOD13A1 vegetation indices products, and MODIS gross primary productivity (GPP) product was used to calculate the CO2 flux based on its relationship with respiration. In the case of SM, it was calculated through the method of applying apparent thermal inertia (ATI) in combination with land surface temperature and albedo. To validate the SM and CO2 flux, flux tower data was used which are the observed measurement values for the extreme drought period of 2014 and 2015 in South Korea. These two variables were analyzed for temporal variation on flux tower data as daily time scale, and the relationship with vegetation index (VI) was synthesized and analyzed on a monthly scale. The highest correlation between SM and VI (correlation coefficient (r) = 0.82) was observed at a time lag of one month, and that between VI and CO2 (r = 0.81) at half month. This regional study suggests a potential capability of MODIS-based SM, VI, and CO2 flux, which can be applied to an assessment of the global view of the agricultural drought by using available satellite remote sensing products.

농업적 가뭄이 발생하면 토양의 수분이 감소하여 식생의 광합성 및 성장을 저해한다. 광합성을 통해 대기 중의 이산화탄소가 흡수되며 산소 생산량이 증가하는데, 이러한 광합성에 부정적인 영향이 생긴다면 대기 중의 이산화탄소 농도가 증가한다. 본 연구에서는 다중분광광학센서인 MODerate resolution Imaging Spectroradiometer (MODIS) 산출물을 이용하여 토양수분, 식생 활력 및 대기 중의 이산화탄소 농도 간의 관계를 분석하였다. 토양수분의 경우, 기존의 마이크로웨이브 센서는 낮은 공간 해상도로 제공되는 특징으로 인해 소규모 연구 지역 분석에 한계가 있어서 상대적으로 고해상도인 광학센서를 이용한 토양수분 산정 방법을 적용하였다. 또한, MODIS 총일차생산량(Gross Primary Productivity, GPP) 산출물을 이용하여 식생의 호흡과의 관계식을 이용하여 이산화탄소 플럭스를 계산하였다. 원격탐사 기반의 토양수분, 식생지수와 이산화탄소 플럭스를 국내의 극한 가뭄 발생시기인 2014년과 2015년도에 대하여 지점 관측 자료인 플럭스타워 값과 비교 분석하였다. 분석한 결과 토양수분과 식생지수 사이에는 한 달의 지체시간, 식생지수와 이산화탄소 플럭스 사이에는 2주 지체시간이 발생했을 때, 상관성이 높게 나타났다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2021R1A2C1093245).

References

  1. Amthor, J.S., Chen, J.M., Clein, J.S., Frolking, S.E., Goulden, M.L., Grant, R.F., Kimball, J.S., King, A.W., McGuire, A.D., Nikolov, N.T., Potter, C.S., Wang, S., and Wofsy, S.C. (2001). "Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodal comparisons and relationships to field measurements." Journal of Geophysical Research: Atmosphere, Vol. 106, No. D24, pp. 33623-33648. https://doi.org/10.1029/2000JD900850
  2. Chang, T.Y., Wang, Y.C., Feng, C.C., Ziegler, A.D., Giambelluca, T.W., and Liou, Y.A. (2012). "Estimation of root zone soil moisture using apparent thermal inertia with MODIS imagery over a tropical catchment in Northern Thailand." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, pp. 752-761. https://doi.org/10.1109/JSTARS.2012.2190588
  3. Hu, X., Ren, H., Tansey, K., Zheng, Y., Ghent, D., Liu, X., and Yan, L. (2019). "Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries." Agricultural and Forest Meteorology, Vol. 279, 107707.
  4. Keshavarz, M.R., Vazifedoust, M., and Alizadeh, A. (2014). "Drought monitoring using a soil wetness deficit index (SWDI) derived from MODIS satellite data." Agricultural Water Management, Vol. 132, pp. 37-45. https://doi.org/10.1016/j.agwat.2013.10.004
  5. Kim, J.S., Seo, G.S., Jang, H.W., and Lee, J.H. (2017). "Correlation analysis between Korean spring drought and large-scale teleconnection patterns for drought forecast." KSCE Journal of Civil Engineering, Vol. 21, pp. 458-466. https://doi.org/10.1007/s12205-016-0580-8
  6. Kogan, F.N. (1997). "Global drought watch from space." Bulletin of the American Meteorological Society, Vol. 78, pp. 621-636. https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2
  7. Lloyd, J., and Taylor, J.A. (1994). "On the temperature dependence of soil respiration." Functional Ecology, Vol. 8, pp. 315-323. https://doi.org/10.2307/2389824
  8. Muraoka, H., Noda, H.M., Nagai, S., Motohka, T., Saitoh, T.M., Nasahara, K.N., and Saigusa, N. (2013). "Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest." Journal of Plant Ecology, Vol. 6, pp. 393-407. https://doi.org/10.1093/jpe/rts037
  9. Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K., and Nghiem, S.V. (2003). "Soil moisture retrieval from AMSR-E." IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, pp. 215-229. https://doi.org/10.1109/TGRS.2002.808243
  10. Peters, A.J., Walter-Shea, E.A., Ji, L., Vliia, A., Hayes, M., and Svoboda, M.D. (2002). "Drought monitoring with NDVI-based standardized vegetation-index." Photogrammetric Engineering and Remote Sensing, Vol. 68, pp. 71-75.
  11. Running, S.W., and Nemani, R.R. (1988). "Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates." Remote Sensing of Environment, Vol. 24, pp. 347-367. https://doi.org/10.1016/0034-4257(88)90034-X
  12. Sivakumar, M.V.K., Motha, R.P., Wilhite, D.A., and Qu, J.J. (2011). "Towards a compendium on national drought policy." In Proceedings of an Expert Meeting on the Preparation of a Compendium on National Drought Policy, World Meteorological Organization, Washington DC, U.S., pp. 1-135.
  13. Sur, C., and Choi, M. (2013). "Evaluating ecohydrological impacts of vegetation activities on climatological perspectives using MODIS gross primary productivity and evapotranspiration products at Korean regional flux network site." Remote Sensing, Vol. 5, pp. 2534-2553. https://doi.org/10.3390/rs5052534
  14. Sur, C., Park, S.Y., Kim, T.W., and Lee, J.H. (2019). "Remote sensing-based agricultural drought monitoring using hydro-meteorological variables." KSCE Journal of Civil Engineering, Vol. 23, pp. 5244-5256. https://doi.org/10.1007/s12205-019-2242-0
  15. Verstraeten, W.W., Veroustraete, F., van der Sande, C.J., Grootaers, I., and Feyen, J. (2006). "Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests." Remote Sensing of Environment, Vol. 101, pp. 299-314. https://doi.org/10.1016/j.rse.2005.12.016
  16. Wilhite, D.A., Svoboda, M.D., and Hayes, M.J. (2007). "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness." Water Resources Management, Vol. 21, pp. 763-774. https://doi.org/10.1007/s11269-006-9076-5