DOI QR코드

DOI QR Code

간헐탈진형 충격기류식 여과집진장치의 여과포 반사거리 예측

Prediction of Off-line Type Pulse Air Jet Bag Filter Reflection Distance

  • 손정삼 (부산대학교 바이오환경에너지학과) ;
  • 정용현 (부경대학교 생태공학과) ;
  • 서정민 (부산대학교 바이오환경에너지학과)
  • Jeong-Sam Son (Department of Bio-Environmental Energy, Pusan National University) ;
  • Yong-Hyun Chung (Department of Ecological Engineering. Pukyong National University) ;
  • Jeong-Min Suh (Department of Bio-Environmental Energy, Pusan National University)
  • 투고 : 2023.10.11
  • 심사 : 2023.11.06
  • 발행 : 2023.11.30

초록

The purpose of this study is to predict the reflection distance following to the pulsing pressure, total air supplying, filter bag size using numercial analysis techniques and use it as an efficient operation condition and economic data for off-line type pulse air jet bag filter. In this research, filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the main experiments using coke dust. Ansys fluent V19.0 apply to CFD simulation, and analysis pulsing characteristics about pulsing pressure, filtration velocity and nozzle diameter. The maximum reflecting distance of off-line type pulse air jet bag filter is 1,000 mm regardless of total air supplying at over the 42 L/m2 conditions, that indicates off-line type can extend filter bag length 1,000 mm than on-line type. In order to effective primary and secondary pulsing of off-line type pulse air jet bag filter, over the 5 bar of pulsing pressure and over the 42 L/m2 of total air supplying are needed.

키워드

참고문헌

  1. Bakke, E., 1974, Optimising filtration parameters, J. Air Pollut. Cont. Assoc., 24, 1150-1154.  https://doi.org/10.1080/00022470.1974.10470027
  2. Dean, A. H., Cushing, K. M., 1988, Survey on the use of pulse-jet fabric filters for coal-fired utility and industrial boilers, J. Air Pollution. Cont. Assoc., 38, 90-96.  https://doi.org/10.1080/08940630.1988.10466357
  3. Hong, S. G., Jung, Y. J., Park, K. W., Jeong, M. H., Lim, K. H., Suh, H. M., Shon, B. H., 2012, A Study on the optimization design of pulse air jet system to improve bag-filter performance, J. Kor. Acad. Ind. Coop., 13, 3792-3791. 
  4. Lim, Y. B., Lee, S. B., Kim, H., Kim, J. Y., Bae, G. N., 2016, Review of Recent Smog Chamber Studies for Secondary Organic Aerosol, J. Korean Soc. Atmos. Environ., 32, 131-157.  https://doi.org/10.5572/KOSAE.2016.32.2.131
  5. Lu, H. S., Tsai, C. J., 1999, Influence of design and operation parameters on bag cleaning performance of pulse-jet baghouse, J. Environ. Eng., 125, 583-591.  https://doi.org/10.1061/(ASCE)0733-9372(1999)125:6(583)
  6. Morris, C., Cursley, C. J., Allen, R. W., 1991, The role of venturis in pulse jet filters, Proc. Filtration Soc., 28, 33-36.  https://doi.org/10.1016/0015-1882(91)80039-8
  7. Park, B. H., 2004, Effect of jet nozzle on the reverse pulse jet cleaning in bag-filter system, Master's Dissertation, Kyunghee University, Seoul, Korea. 
  8. Schalucherinigung, D., 1989, Fabric cleaning in pulse jet filters, chemical engineering and processing, Process Intensification, 26, 179-183  https://doi.org/10.1016/0255-2701(89)90010-X
  9. Simon, X., Chazelet, S., Thomas, D., Bemer, D., Regnier, R., 2007, Experimental study of pulse-jet cleaning of bag filters supported by rigid rings, J. Powder Technol., 172, 67-81.  https://doi.org/10.1016/j.powtec.2006.10.005
  10. Suh, J. M., Park, J. H., Cho, J. H., Jin, K. H., Jung, M. S., Yi, P. I., Hong, S. C., Sivakumar, S., Choi, G. C., 2014, Pressure drop predictions using multiple regression model in pulse jet type bag filter without venturi, J. Environ. Sci. Int., 23, 2045-2056.  https://doi.org/10.5322/JESI.2014.23.12.2045
  11. Suh, J. M., Ryu, J. Y., Lim, W. T., Jung, M. S., Park, J. H., Shin, C. H., 2010, Prediction of the efficiency of factors affecting pressure drop in a pulse air jet type bag filter, J. Environ. Sci., 19, 437-446.  https://doi.org/10.5322/JES.2010.19.4.437
  12. Xavier, S., Sandrine, C., Dominique, T., Denis, B., Roland, R., 2017, Experimental study of pulse jet cleaning of bag filter supported by rigid rings, J. Powder. Technol., 172, 67-81.  https://doi.org/10.1016/j.powtec.2006.10.005
  13. Zhao, Z., Wei, Z., Zhiqiang, J. Z., Qingyan. Y. C., 2007, Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD:Part 1-summary of prevalent turbulence models, HAVC and R Research, 13(6), 853-870. https://doi.org/10.1080/10789669.2007.10391459