DOI QR코드

DOI QR Code

Effects of Shading Treatments on Growth of Abies koreana Seedlings in High-Temperature and High Light Environments

차광막 처리가 고온 및 고광도 환경에서 구상나무(Abies koreana) 묘목의 생육에 미치는 영향

  • Jae-Hyun Park (Forest Bioinformation Division, National Institute of Forest Science) ;
  • Hyo-In Lim (Forest Bioinformation Division, National Institute of Forest Science) ;
  • Han-Na Seo (Forest Bioinformation Division, National Institute of Forest Science) ;
  • Yong-Han Yoon (Department of Green Technology Convergence, College of Science Technology, KonKuk University)
  • 박재현 (국립산림과학원 산림생명정보연구과) ;
  • 임효인 (국립산림과학원 산림생명정보연구과) ;
  • 서한나 (국립산림과학원 산림생명정보연구과) ;
  • 윤용한 (건국대학교 녹색기술융합학과)
  • Received : 2023.10.12
  • Accepted : 2023.11.20
  • Published : 2023.11.30

Abstract

This study investigated the protective effects of shade nets on Abies koreana seedlings subjected to high temperature and luminosity stress, which are pertinent for plant survival in climate change scenarios. This study, conducted at Konkuk University, compared the growth, survival, and soil conditions of 3-year-old specimens across natural, greenhouse, and shaded settingsfrom July to September 2022. Our findings demonstrated that shade nets significantly enhanced seedling survival by moderating soil temperature and moisture. This is particularly evident in high-temperature conditions, where shade nets mitigate stress on seedlings and safeguard them from excessive sunlight exposure. Proper net installation height and location are crucial for optimal temperature and humidity control, suggesting broader applicability for various species and offering strategies to combat the ecological impacts of climate change.

Keywords

References

  1. Aberkani, K., Hao, X., Halleux, D., Dorais, M., Vineberg, S., Gosselin, A., 2010, Effects of shading using a retractable liquid foam technology on greenhouse and plant microclimates, Hortte, 2(20), 283-291.  https://doi.org/10.21273/HORTTECH.20.2.283
  2. Ahn, U. S., Yun, Y. S., 2020, Causes of decline in the Korean fir based on spatial distribution in the Mt. Halla region in Korea: A meta-analysis, Forests, 11(4), 391. 
  3. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Cobb, N., 2010, A Global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and Management, 259(4), 660-684.  https://doi.org/10.1016/j.foreco.2009.09.001
  4. Amissah, L., Mohren, G., Kyereh, B., Poorter, L., 2015, The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species, PLoS ONE, 4(10), e0121004. 
  5. Bell, D. M., Bradford, J. B., Lauenroth, W. K., 2014, Mountain landscapes offer few opportunities for high-elevation tree species migration, Global change biology, 20(5), 1441-1451.  https://doi.org/10.1111/gcb.12504
  6. Broecker, W. S., 1975, Climatic change: are we on the brink of a pronounced global warming, Science, 189(4201), 460-463.  https://doi.org/10.1126/science.189.4201.460
  7. Chen, F., Liu, L., Chen, F., Jia, G., 2012, The ecological characteristics of seed germination and seedling establishment of manglietia patungensis: implication for species conservation, American Journal of Plant Sciences, 10(03), 1455-1461.  https://doi.org/10.4236/ajps.2012.310175
  8. Cotto, O., Wessely, J., Georges, D., Klonner, G., Schmid, M., Dullinger, S., Guillaume, F., 2017, A Dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nature Communications, 8, 15399. 
  9. Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araujo, M. B., Guisan, A., 2011, 21st century climate change threatens mountain flora unequally across Europe, Global Change Biology, 17(7), 2330-2341.  https://doi.org/10.1111/j.1365-2486.2010.02393.x
  10. Friend, D., 1984, Shade adaptation of photosynthesis in coffea Arabica, Photosynth Res, 4(5), 325-334.  https://doi.org/10.1007/BF00034977
  11. Guerin, V., 2022, Soil Co2, Ch4 and N2o fluxes in urban forests, treed and open lawns in Angers, France. 
  12. Hassanien, R., Ming, L., 2017, Influences of greenhouse-integrated semi-transparent photovoltaics on microclimate and lettuce growth, International Journal of Agricultural and Biological Engineering, 6(10), 11-22.  https://doi.org/10.25165/j.ijabe.20171006.3407
  13. Helgerson, O., 1990, Effects of alternate types of microsite shade on survival of planted douglas-fir in Southwest Oregon, New Forest, 4(3), 327-332.  https://doi.org/10.1007/BF00030043
  14. Kim, J. K., Koh, J. G., Yim, H. T., Kim, D. S., 2017, Changes of spatial distribution of Korean fir forest in Mt. Hallasan for the past 10 years, Korean Journal of Environment and Ecology, 31(6), 549-556.  https://doi.org/10.13047/KJEE.2017.31.6.549
  15. Kim, N. S., Lee, H. C., 2013, A Study on changes and distributions of Korean fir in sub-alpine zone, Journal of the Korean Society of Environmental Restoration Technology, 16(5), 49-57.  https://doi.org/10.13087/kosert.2013.16.5.049
  16. Klimkova, M., Cano, Y., Cano, Y., Lvoncik, S., Lvoncik, S., Khum, W., Madera, P., 2021, Does shade impact coffee yield, tree trunk, and soil moisture on coffea canephora clantations in Mondulkiri, Cambodia?, Sustainability, 24(13), 13823. 
  17. Koo, K. A., Kim, J., Kong, W. S., Jung, H., Kim, G., 2016, Projecting the potential distribution of Abies koreana in Korea under the climate change based on RCP scenarios, Journal of the Korean Society of Environmental Restoration Technology, 19(6), 19-30.  https://doi.org/10.13087/kosert.2016.19.6.19
  18. Koo, K. A., Kong, W. S., Park, S. U., Lee, J. H., Kim, J., Jung, H., 2017, Sensitivity of Korean fir (Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area, Ecological Modelling, 353, 5-16.  https://doi.org/10.1016/j.ecolmodel.2017.01.018
  19. Marcante, S., Erschbamer, B., Buchner, O., Neuner, G., 2014, Heat tolerance of early developmental stages of glacier foreland species in the growth chamber and in the field, Plant ecology, 215, 747-758.  https://doi.org/10.1007/s11258-014-0361-8
  20. May, J., Oberbauer, S., Unger, S., Simon, M., Betway, K., Hollister, R., 2022, Shading decreases and delays ndvi and flowering of prostrate arctic shrubs, Arctic Science, 3(8), 967-978.  https://doi.org/10.1139/as-2020-0043
  21. Millar, C. I., Westfall, R. D., Delany, D. L., Bokach, M. J., Flint, A. L., Flint, L. E., 2012, Forest mortality in high-elevation whitebark pine (Pinus albicaulis) forests of eastern California, USA; influence of environmental context, bark beetles, climatic water deficit, and warming, Canadian Journal of Forest Research, 42(4), 749-765.  https://doi.org/10.1139/x2012-031
  22. Momeni, D., 2022, Impact of shading net on microclimate condition in orchards., PREPRINT available at Research Square, 1-21. 
  23. Morais, H., Caramori, P., Ribeiro, A., Gomes, J., Koguishi, M., 2006, Microclimatic characterization and productivity of coffee plants grown under shade of pigeon pea in Southern Brazil, Pesq. agropec. bras., 5(41), 763-770.  https://doi.org/10.1590/S0100-204X2006000500007
  24. Moser, S. C., Dilling, L., 2011, Communicating climate change: closing the science-action gap, The Oxford Handbook of Climate Change and Society, 161-174. 
  25. Park, J. S., Shin, H. S., Choi, C. H., Lee, J., Kim, J., 2018, Hierarchical environmental factors affecting the distribution of Abies koreana on the Korean Peninsula, Forests, 9(12), 777. 
  26. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Benito Alonso, J. L., Grabherr, G., 2012, Recent plant diversity changes on Europe's mountain summits, Science, 336(6079), 353-355.  https://doi.org/10.1126/science.1219033
  27. Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Yang, D. Q., 2015, Elevation-dependent warming in mountain regions of the world, Nature Climate Change, 5(5), 424-430.  https://doi.org/10.1038/nclimate2563
  28. R Core Team, 2021, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. 
  29. Revelle, R., Suess, H. E., 1957, Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades, Tellus, 9(1), 18-27.  https://doi.org/10.3402/tellusa.v9i1.9075
  30. RStudio Team, 2021, RStudio: Integrated Development for R, RStudio, PBC, Boston. 
  31. Samuelson, L., Stokes, T., 2012, Leaf physiological and morphological Responses to shade in grass-stage seedlings and young trees of Longleaf Pine, Forests, 3(3), 684-699.  https://doi.org/10.3390/f3030684
  32. Seo, J. W., Choi, E. B., Park, J. H., Kim, Y. J., Lim, H. I., 2021, The role of aging and wind in inducing death and/or growth reduction in Korean fir (Abies koreana Wilson) on Mt. Halla, Korea, Atmosphere, 12(9), 1135. 
  33. Shin, S., Kim, J. H., Dang, J. H., Seo, I. S., Lee, B. Y., 2021, Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea, Journal of Ecology and Environment, 45(1), 1-10.  https://doi.org/10.1186/s41610-020-00177-4
  34. Solomon, S., Plattner, G. K., Knutti, R., Friedlingstein, P., 2009, Irreversible climate change due to carbon dioxide emissions, Proceedings of the National Academy of Sciences, 106(6), 1704-1709.  https://doi.org/10.1073/pnas.0812721106
  35. Thaler, P., Pages, L., 1996, Root apical diameter and root elongation rate of rubber seedlings (hevea brasiliensis) show parallel responses to photoassimilate availability, Physiologia Plantarum, 97(2), 365-371.  https://doi.org/10.1034/j.1399-3054.1996.970222.x
  36. Tan, P., Ismail, M., 2015, The effects of urban forms on photosynthetically active radiation and urban greenery in a compact city, Urban Ecosyst, 3(18), 937-961.  https://doi.org/10.1007/s11252-015-0461-9
  37. Zhang, N., Westreenen, A., Anten, N., Evers, J., Marcelis, L., 2020, Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: a simulation study using a functional-structural plant model, Annals of Botany, 4(126), 635-646.  https://doi.org/10.1093/aob/mcz197
  38. Zou, Y., Zhong, Y., Yu, H., Pokharel, S., Fang, W., Chen, F., 2022, Impacts of ecological shading by roadside trees on tea foliar nutritional and bioactive components, community diversity of insects and soil microbes in tea plantation, Biology, 12(11), 1800.