References
- Bakoura, A., Bourada, F., Bousahla, A.A., Tounsi, A., Benrahou, K.H., Tounsi, A., ... & Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSD in conjunction with the stress function method", Comput. Concrete, 27(1), 73-83. https://doi.org/10.12989/cac.2021.27.1.073.
- Bennedjadi, M., Aldosari, S.M., Chikh, A., Kaci, A., Bousahla, A.A., Bourada, F., ... & Tounsi, A. (2023), "Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions", Geomech. Eng., 32(2), 159-177. https://doi.org/10.12989/gae.2023.32.2.159.
- Bhandari, M. and Purohit, K. (2014), "Static response of functionally graded material plate under transverse load for varying aspect ratio", Int. J. Metal., 2014, 1-11. https://doi.org/10.1155/2014/980563.
- Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016
- Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., ... & Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
- Brischetto, S. and Carrera, E. (2010), "Advanced mixed theories for bending analysis of functionally graded plates", Comput. Struct., 88(23-24), 1474-1483. https://doi.org/10.1016/j.compstruc.2008.04.004.
- Brischetto, S., Leetsch, R., Carrera, E., Wallmersperger, T. and Kroplin, B. (2008), "Thermo-mechanical bending of functionally graded plates", J. Therm. Stress., 31(3), 286-308. https://doi.org/10.1080/01495730701876775.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539 https://doi.org/10.1016/S0020-7403(03)00058-4.
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solid. Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011.
- Fazzolari, F.A. and Carrera, E. (2014a), "Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core", J. Sound Vib., 333(5), 1485-1508. https://doi.org/10.1016/j.jsv.2013.10.030.
- Fazzolari, F.A. and Carrera, E. (2014b), "Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions", J. Therm. Stress., 37(12), 1449-1481.https://doi.org/10.1080/01495739.2014.937251.
- Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1. https://doi.org/10.1016/j.compositesb.2014.12.004.
- Garg, A., Belarbi, M.O., Li, L. and Tounsi, A. (2022), "Bending analysis of power-law sandwich FGM beams under thermal conditions", Adv. Aircraft Spacecraft Sci., 9(3), 243-261. https://doi.org/10.12989/aas.2022.9.3.243.
- Ghugal, Y.M. and Sayyad, A.S. (2013), "Stress analysis of thick laminated plates using trigonometric shear deformation theory", Int. J. Appl. Mech., 5(1). https://doi.org/10.1142/S1758825113500038.
- Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., ... & Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
- GulshanTaj, M.G., Chakrabarti, A. and Sheikh, A.H. (2013), "Analysis of functionally graded plates using higher order shear deformation theory", Appl. Math. Model., 37(18-19), 8484-8494. https://doi.org/10.1016/j.apm.2013.03.058.
- Gupta, A. and Talha, M. (2017), "Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory", Compos. Part B: Eng., 123, 241-261. https://doi.org/10.1016/j.compositesb.2017.05.010.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H., ... & Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/cac.2021.39.1.051.
- Hadji, M., Bouhadra, A., Mamen, B., Menasria, A., Bousahla, A.A., Bourada, F., ... & Tounsi, A. (2023), "Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures", Steel Compos. Struct., 46(1), 1-13. https://doi.org/10.12989/scs.2023.46.1.001.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "Stress analysis of transversely loaded functionally graded plates with a higher order shear and normal deformation theory", J. Eng. Mech., 139(12), 1663-1680. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000601.
- Kant, T., Jha, D.K. and Singh, R.K. (2014), "A higher-order shear and normal deformation functionally graded plate model: Some recent results", Acta Mechanica, 225(10), 2865-2876. https://doi.org/10.1007/s00707-014-1213-2.
- Khan, T., Zhang, N. and Akram, A. (2019), "State of the art review of functionally graded materials" , 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 1-9.
- Kulkarni, K., Singh, B.N. and Maiti, D.K. (2015), "Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory", Compos. Struct., 134, 147-157. https://doi.org/10.1016/j.compstruct.2015.08.060.
- Lu, C.F., Chen, W.Q., Xu, R.Q. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solid. Struct., 45(38), 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018.
- Mashat, D.S., Carrera, E., Zenkour, A.M., Al Khateeb, S.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B: Eng., 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008.
- El Meiche, N., Tounsi, A., Ziane, N. and Mechab, I. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.12989/eas.2018.14.2.103.
- Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., ... & Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. https://doi.org/10.12989/scs.2021.39.5.631.
- Merdaci, S. and Belghoul, H. (2019), "High-order shear theory for static analysis of functionally graded plates with porosities", Comptes Rendus Mecanique, 347(3), 207-217. https://doi.org/10.1016/j.crme.2019.01.001.
- Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Na, K.S. and Kim, J.H. (2006), "Nonlinear bending response of functionally graded plates under thermal loads", J. Therm. Stress., 29(3), 245-261. https://doi.org/10.1080/01495730500360427.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
- Nguyen, T.K. (2015), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83 (1), 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
- Pendhari, S.S., Kant, T., Desai, Y.M. and Subbaiah, C.V. (2012), "Static solutions for functionally graded simply supported plates", Int. J. Mech. Mater. Des., 8(1), 51-69. https://doi.org/10.1007/s10999-011-9175-1.
- Pradhan, P., Sutar, M.K. and Pattnaik, S. (2019), "A state of the art in functionally graded materials and their analysis", Mater. Today: Proc., 18, 3931-3936. https://doi.org/https://doi.org/10.1016/j.matpr.2019.07.333.
- Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. Solid. Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9.
- Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., ... & Ma, A. (2020), "30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges", Compos. Part B: Eng., 201, 108376. https://doi.org/10.1016/j.compositesb.2020.108376.
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.
- Sayyad, A.S. and Ghugal, Y.M. (2014), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10(3), 247-267. https://doi.org/10.1007/s10999-014-9244-3.
- Sayyad, A.S. and Ghugal, Y.M. (2016), "Cylindrical bending of multilayered composite laminates and sandwiches", Adv. Aircraft Spacecraft Sci., 3(2), 113-148. https://doi.org/10.12989/aas.2016.3.2.113.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 09(01), 1750007. https://doi.org/10.1142/S1758825117500077.
- Shahrjerdi, A., Mustapha, F., Bayat, M., Sapuan, S.M., Zahari, R. and Shahzamanian, M.M. (2011), "Natural frequency of F.G. rectangular plate by shear deformation theory", IOP Conf. Ser.: Mater. Sci. Eng., 17(1), 012008 https://doi.org/10.1088/1757-899X/17/1/012008.
- Srividhya, S., Kumar, B., Gupta, R.K. and Rajagopal, A. (2019), "Nonlinear analysis of FGM plates using generalised higher order shear deformation theory", Int. J. Mater. Struct. Integr., 13(1-3), 3-15. https://doi.org/10.1504/IJMSI.2019.100381.
- Srividhya, S., Raghu, P., Rajagopal, A. and Reddy, J. (2018), "Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory", Int. J. Eng. Sci., 125, 1-22. https://doi.org/10.1016/j.ijengsci.2017.12.006.
- Swami, S. K. and Ghugal, Y. M. (2021), "Thermoelastic bending analysis of laminated plates subjected to linear and nonlinear thermal loads", Adv. Aircraft Spacecraft Sci., 8(3), 213-237. https://doi.org/10.12989/aas.2021.8.3.213.
- Swaminathan, K., Naveenkumar, D. T., Zenkour, A. M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070.
- Tahir, S. I., Tounsi, A., Chikh, A., Al-Osta, M. A., Al-Dulaijan, S. U. and Al-Zahrani, M. M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(4), 501. https://doi.org/10.12989/scs.2022.42.4.501.
- Woodward, B. and Kashtalyan, M. (2011), "Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates", Eur. J. Mech.-A/Solid., 30(5), 705-718. https://doi.org/10.1016/j.euromechsol.2011.04.00.
- Yadav, S., Damse, S., Pendhari, S., Sangle, K. and Sayyad, A.S. (2022), "Comparative studies between Semi-analytical and shear deformation theories for functionally graded beam under bending", Forc. Mech., 8, 100111. https://doi.org/10.1016/j.finmec.2022.100111.
- Yadav, S., Pandare, P., Pendhari, S., Sangle, K. and Ghugal, Y.M. (2023a), "Static analysis of an exponentially varying functionally graded beam using trigonometric shear deformation theory", Compos.: Mech. Comput. Appl., 14(3), 1-23. https://doi.org/10.1615/CompMechComputApplIntJ.2023047080.
- Yadav, S.S., Sangle, K.K., Shinde, S.A., Pendhari, S.S. and Ghugal, Y.M. (2023b), "Bending analysis of FGM plates using sinusoidal shear and normal deformation theory", Forc. Mech., 11, 100185 https://doi.org/10.1016/j.finmec.2023.100185.
- Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin Wall. Struct., 170, 108549. https://doi.org/10.1016/j.tws.2021.108549.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zhang, H., Jiang, J.Q. and Zhang, Z.C. (2014), "Three-dimensional elasticity solutions for bending of generally supported thick functionally graded plates", Appl. Math. Mech., 35(11), 1467-1478. https://doi.org/10.1007/s10483-014-1871-7.
- Zhong, Y., Li, R., Liu, Y. and Tian, B. (2009), "On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported", Int. J. Solid. Struct., 46(11-12), 2506-2513. https://doi.org/10.1016/j.ijsolstr.2009.02.001.