과제정보
The authors would like to acknowledge the support provided by the National Natural Science Foundation of China (Grant no. 52378313).
참고문헌
- Ali, W.B. and Urgessa, G.S. (2014), "Structural capacities of spherically voided biaxial slab (SVBS)", Structures Congress, Boston, MA, USA, April.
- Balaji, P.S. and Karthik Selva Kumar, K. (2021), "Applications of nonlinearity in passive vibration control: A review", J. Vib. Eng. Technol., 9, 183-213. https://doi.org/10.1007/s42417-020-00216-3.
- Basili, M. and Angelis, M.D. (2007), "Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices", J. Sound Vib., 301(1), 106-125. https://doi.org/10.1016/j.jsv.2006.09.027.
- Brock, J.E. (2021), "A note on the damped vibration absorber", J. Appl. Mech., 13(4), A284. https://doi.org/10.1115/1.4009588.
- Chen, J. and Georgakis, C.T. (2013), "Tuned rolling-ball dampers for vibration control in wind turbines", J. Sound Vib., 332(21), 5271-5282. https://doi.org/10.1016/j.jsv.2013.05.019.
- Churakov, A. (2014), "Biaxial hollow slab with innovative types of voids", Constr. Unique Build. Struct., 6(21), 70-88.
- Domizio, M.D., Ambrosini, D. and Curadelli, O. (2015), "Performance of tuned mass damper against structural collapse due to near fault earthquakes", J. Sound Vib., 336, 32-45. https://doi.org/10.1016/j.jsv.2014.10.007.
- Enriquez-Zarate, J., Abundis-Fong, H.F., Velazquez, R. and Gutierrez, S. (2019), "Passive vibration control in a civil structure: experimental results", Measure. Control, 52(7-8), 938-946. https://doi.org/10.1177/0020294019847715.
- Fan, P.R., Li, S.J. and Mao, L. (2023), "Seismic control performance and experimental study of multiple pounding tuned rolling mass damper", Earthq. Struct., 24(4), 247-258. https://doi.org/10.12989/eas.2023.24.4.247.
- Furtmuller, T., Joas, G. and Adam, C. (2022), "Control of pendulum oscillations by tuned liquid dampers", J. Fluids Struct., 114, 103753. https://doi.org/10.1016/j.jfluidstructs.2022.103753.
- Igusa, T. and Xu, K. (1994), "Vibration control using multiple tuned mass dampers", J. Sound Vib., 175(4), 491-503. https://doi.org/10.1006/jsvi.1994.1341.
- Karami Mohammadi, R. and Najarzade, S. (2018), "Semi-active control of structures equipped with MR dampers based on uniform deformation theory", Int. J. Civil Eng., 16(8), 871-885. https://doi.org/10.1007/s40999-017-0213-8.
- Karamodin, A. and Kazemi, H.J. (2008), "Semi-active control of structures using neuro-predictive algorithm for MR dampers", Struct. Control Health Monit., 17, 237-253. https://doi.org/10.1002/stc.278.
- Khodabandehlou, H., Pekcan, G., Fadali, M.S. and Salem, M.M.A. (2018), "Active neural predictive control of seismically isolated structures", Struct. Control Health Monit., 25(1), e2061. https://doi.org/10.1002/stc.2061.
- Kim, H. and Adeli, H. (2005), "Hybrid control of irregular steel highrise building structures under seismic excitations", Int. J. Numer. Method. Eng., 63(12), 1757-1774. https://doi.org/10.1002/nme.1336.
- Lai, T. (2010), "Structural behavior of BubbleDeck® slabs and their application to lightweight bridge decks", MSc Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Li, S.J., Fu, L. and Kong, F. (2015), "Seismic response reduction of structures equipped with a voided biaxial slab-based tuned rolling mass damper", Shock Vib., 2015, 760394. https://doi.org/10.1155/2015/760394.
- Li, Y.H., Li, A.Q. and Deng, Y. (2021), "Performance investigation of circular TLD devices used in wind turbine generation tower via both experiment and numerical simulation", J. Vib. Eng. Technol., 9, 1715-1732. https://doi.org/10.1007/s42417-021-00323-9.
- Liang, Q. and Li, L.Y. (2020), "Optimal design for a novel inerter-based clutching tuned mass damper system", J. Vib. Control, 26(21-22), 2050-2059. https://doi.org/10.1177/1077546320910532.
- Lotfollahi-Yaghin, M.A., Ahmadi, H. and Tafakhor, H. (2016), "Seismic responses of an offshore jacket-type platform incorporated with tuned liquid dampers", Adv. Struct. Eng., 19(2), 227-238. https://doi.org/10.1177/1369433215624340.
- Lu, Z., Li, K., Ouyang, Y.T. and Shan, J.Z. (2018), "Performance-based optimal design of tuned impact damper for seismically excited nonlinear building", Eng. Struct., 160, 314-327. https://doi.org/10.1016/j.engstruct.2018.01.042.
- Naprstek, J., Fischer, C., Pirner, M. and Fischer, O. (2011), "Nonlinear dynamic behaviour of a ball vibration absorber", 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, May.
- Obata, M. and Shimazaki, Y. (2007), "Vibration control effects and application example of tuned rotary damped mass dampers", Struct. Eng., 85(13), 41-45.
- Obata, M. and Shimazaki, Y. (2008), "Optimum parametric studies on tuned rotary-mass damper", J. Vib. Control, 14(6), 867-884. https://doi.org/10.1177/1077546307084443.
- Omidi, E. and Mahmoodi, N. (2015), "Hybrid positive feedback control for active vibration attenuation of flexible structures", IEEE/ASME Trans. Mech., 20(4), 1790-1797. https://doi.org/10.1177/1045389X10361631.
- Pirner, M. (1994), "Dissipation of kinetic energy of large-span bridges", Acta Tech. CSAV, 39(6), 645-645.
- Pirner, M. (2002), "Actual behaviour of a ball vibration absorber", J. Wind Eng. Indust. Aerodyn., 90(8), 987-1005. https://doi.org/10.1016/S0167-6105(02)00215-5.
- Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
- Reed, D., Yu, J., Yeh, H. and Gardarsson, S. (1998), "Investigation of tuned liquid dampers under large amplitude excitation", J. Eng. Mech., 124(4), 405-413. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(405).
- Rudinger, F. (2007), "Tuned mass damper with nonlinear viscous damping", J. Sound Vib., 300(3-5), 932-948. https://doi.org/10.1016/j.jsv.2006.09.009.
- Sagadevan, R. and Rao, B.N. (2017), "Analytical studies on flexural capacity of biaxial hollow slab", International Conference on Composite Materials and Structures, Hyderabad, India, December.
- Sarabi, B.K., Sharma, M. and Kaur, D. (2017), "A novel technique for active vibration control, based on optimal tracking control", Pramana, 89, 24. https://doi.org/10.1007/s12043-017-1427-7.
- Schnellenbach-Held, M. and Pfeffer, K. (2002), "Punching behavior of biaxial hollow slabs", Cement Concrete Compos., 24(6), 551-556. https://doi.org/10.1016/S0958-9465(01)00071-3.
- Soto, M.G. and Adeli, H. (2013), "Tuned mass dampers", Arch. Comput. Method. Eng., 20(4), 419-431. https://doi.org/10.1007/s11831-013-9091-7.
- Vasanth, X.A., Paul, P.S., Lawrance, G. and Varadarajan, A.S. (2019), "Vibration control techniques during turning process: A review", Aust. J. Mech. Eng., 19(2), 221-241. https://doi.org/10.1080/14484846.2019.1585224.
- Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003), "Semi-active control of structures incorporated with magnetorheological dampers using neural networks", Smart Mater. Struct., 12(1), 80-87. https://doi.org/10.1088/0964-1726/12/1/309.
- Yang, J.N., Li, Z. and Danielians, A. (1992), "Aseismic hybrid control of nonlinear and hysteretic structures", J. Eng. Mech., 118(7), 1423-1440. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:7(1423).
- Zhang, Z.L., Chen, J.B. and Li, J. (2014), "Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber", Struct. Infrastr. Eng., 10(8), 1087-1100. https://doi.org/10.1080/15732479.2013.792098.