DOI QR코드

DOI QR Code

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Irakoze Jean Paula (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Ling Mao (School of Civil Engineering and Architecture, Wuhan University of Technology)
  • 투고 : 2023.08.10
  • 심사 : 2023.11.06
  • 발행 : 2023.12.25

초록

This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

키워드

과제정보

The authors would like to acknowledge the support provided by the National Natural Science Foundation of China (Grant no. 52378313).

참고문헌

  1. Ali, W.B. and Urgessa, G.S. (2014), "Structural capacities of spherically voided biaxial slab (SVBS)", Structures Congress, Boston, MA, USA, April.
  2. Balaji, P.S. and Karthik Selva Kumar, K. (2021), "Applications of nonlinearity in passive vibration control: A review", J. Vib. Eng. Technol., 9, 183-213. https://doi.org/10.1007/s42417-020-00216-3.
  3. Basili, M. and Angelis, M.D. (2007), "Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices", J. Sound Vib., 301(1), 106-125. https://doi.org/10.1016/j.jsv.2006.09.027.
  4. Brock, J.E. (2021), "A note on the damped vibration absorber", J. Appl. Mech., 13(4), A284. https://doi.org/10.1115/1.4009588.
  5. Chen, J. and Georgakis, C.T. (2013), "Tuned rolling-ball dampers for vibration control in wind turbines", J. Sound Vib., 332(21), 5271-5282. https://doi.org/10.1016/j.jsv.2013.05.019.
  6. Churakov, A. (2014), "Biaxial hollow slab with innovative types of voids", Constr. Unique Build. Struct., 6(21), 70-88.
  7. Domizio, M.D., Ambrosini, D. and Curadelli, O. (2015), "Performance of tuned mass damper against structural collapse due to near fault earthquakes", J. Sound Vib., 336, 32-45. https://doi.org/10.1016/j.jsv.2014.10.007.
  8. Enriquez-Zarate, J., Abundis-Fong, H.F., Velazquez, R. and Gutierrez, S. (2019), "Passive vibration control in a civil structure: experimental results", Measure. Control, 52(7-8), 938-946. https://doi.org/10.1177/0020294019847715.
  9. Fan, P.R., Li, S.J. and Mao, L. (2023), "Seismic control performance and experimental study of multiple pounding tuned rolling mass damper", Earthq. Struct., 24(4), 247-258. https://doi.org/10.12989/eas.2023.24.4.247.
  10. Furtmuller, T., Joas, G. and Adam, C. (2022), "Control of pendulum oscillations by tuned liquid dampers", J. Fluids Struct., 114, 103753. https://doi.org/10.1016/j.jfluidstructs.2022.103753.
  11. Igusa, T. and Xu, K. (1994), "Vibration control using multiple tuned mass dampers", J. Sound Vib., 175(4), 491-503. https://doi.org/10.1006/jsvi.1994.1341.
  12. Karami Mohammadi, R. and Najarzade, S. (2018), "Semi-active control of structures equipped with MR dampers based on uniform deformation theory", Int. J. Civil Eng., 16(8), 871-885. https://doi.org/10.1007/s40999-017-0213-8.
  13. Karamodin, A. and Kazemi, H.J. (2008), "Semi-active control of structures using neuro-predictive algorithm for MR dampers", Struct. Control Health Monit., 17, 237-253. https://doi.org/10.1002/stc.278.
  14. Khodabandehlou, H., Pekcan, G., Fadali, M.S. and Salem, M.M.A. (2018), "Active neural predictive control of seismically isolated structures", Struct. Control Health Monit., 25(1), e2061. https://doi.org/10.1002/stc.2061.
  15. Kim, H. and Adeli, H. (2005), "Hybrid control of irregular steel highrise building structures under seismic excitations", Int. J. Numer. Method. Eng., 63(12), 1757-1774. https://doi.org/10.1002/nme.1336.
  16. Lai, T. (2010), "Structural behavior of BubbleDeck® slabs and their application to lightweight bridge decks", MSc Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.
  17. Li, S.J., Fu, L. and Kong, F. (2015), "Seismic response reduction of structures equipped with a voided biaxial slab-based tuned rolling mass damper", Shock Vib., 2015, 760394. https://doi.org/10.1155/2015/760394.
  18. Li, Y.H., Li, A.Q. and Deng, Y. (2021), "Performance investigation of circular TLD devices used in wind turbine generation tower via both experiment and numerical simulation", J. Vib. Eng. Technol., 9, 1715-1732. https://doi.org/10.1007/s42417-021-00323-9.
  19. Liang, Q. and Li, L.Y. (2020), "Optimal design for a novel inerter-based clutching tuned mass damper system", J. Vib. Control, 26(21-22), 2050-2059. https://doi.org/10.1177/1077546320910532.
  20. Lotfollahi-Yaghin, M.A., Ahmadi, H. and Tafakhor, H. (2016), "Seismic responses of an offshore jacket-type platform incorporated with tuned liquid dampers", Adv. Struct. Eng., 19(2), 227-238. https://doi.org/10.1177/1369433215624340.
  21. Lu, Z., Li, K., Ouyang, Y.T. and Shan, J.Z. (2018), "Performance-based optimal design of tuned impact damper for seismically excited nonlinear building", Eng. Struct., 160, 314-327. https://doi.org/10.1016/j.engstruct.2018.01.042.
  22. Naprstek, J., Fischer, C., Pirner, M. and Fischer, O. (2011), "Nonlinear dynamic behaviour of a ball vibration absorber", 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, May.
  23. Obata, M. and Shimazaki, Y. (2007), "Vibration control effects and application example of tuned rotary damped mass dampers", Struct. Eng., 85(13), 41-45.
  24. Obata, M. and Shimazaki, Y. (2008), "Optimum parametric studies on tuned rotary-mass damper", J. Vib. Control, 14(6), 867-884. https://doi.org/10.1177/1077546307084443.
  25. Omidi, E. and Mahmoodi, N. (2015), "Hybrid positive feedback control for active vibration attenuation of flexible structures", IEEE/ASME Trans. Mech., 20(4), 1790-1797. https://doi.org/10.1177/1045389X10361631.
  26. Pirner, M. (1994), "Dissipation of kinetic energy of large-span bridges", Acta Tech. CSAV, 39(6), 645-645.
  27. Pirner, M. (2002), "Actual behaviour of a ball vibration absorber", J. Wind Eng. Indust. Aerodyn., 90(8), 987-1005. https://doi.org/10.1016/S0167-6105(02)00215-5.
  28. Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
  29. Reed, D., Yu, J., Yeh, H. and Gardarsson, S. (1998), "Investigation of tuned liquid dampers under large amplitude excitation", J. Eng. Mech., 124(4), 405-413. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(405).
  30. Rudinger, F. (2007), "Tuned mass damper with nonlinear viscous damping", J. Sound Vib., 300(3-5), 932-948. https://doi.org/10.1016/j.jsv.2006.09.009.
  31. Sagadevan, R. and Rao, B.N. (2017), "Analytical studies on flexural capacity of biaxial hollow slab", International Conference on Composite Materials and Structures, Hyderabad, India, December.
  32. Sarabi, B.K., Sharma, M. and Kaur, D. (2017), "A novel technique for active vibration control, based on optimal tracking control", Pramana, 89, 24. https://doi.org/10.1007/s12043-017-1427-7.
  33. Schnellenbach-Held, M. and Pfeffer, K. (2002), "Punching behavior of biaxial hollow slabs", Cement Concrete Compos., 24(6), 551-556. https://doi.org/10.1016/S0958-9465(01)00071-3.
  34. Soto, M.G. and Adeli, H. (2013), "Tuned mass dampers", Arch. Comput. Method. Eng., 20(4), 419-431. https://doi.org/10.1007/s11831-013-9091-7.
  35. Vasanth, X.A., Paul, P.S., Lawrance, G. and Varadarajan, A.S. (2019), "Vibration control techniques during turning process: A review", Aust. J. Mech. Eng., 19(2), 221-241. https://doi.org/10.1080/14484846.2019.1585224.
  36. Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003), "Semi-active control of structures incorporated with magnetorheological dampers using neural networks", Smart Mater. Struct., 12(1), 80-87. https://doi.org/10.1088/0964-1726/12/1/309.
  37. Yang, J.N., Li, Z. and Danielians, A. (1992), "Aseismic hybrid control of nonlinear and hysteretic structures", J. Eng. Mech., 118(7), 1423-1440. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:7(1423).
  38. Zhang, Z.L., Chen, J.B. and Li, J. (2014), "Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber", Struct. Infrastr. Eng., 10(8), 1087-1100. https://doi.org/10.1080/15732479.2013.792098.