DOI QR코드

DOI QR Code

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Received : 2023.04.20
  • Accepted : 2023.11.06
  • Published : 2023.12.25

Abstract

Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

Keywords

References

  1. ACI 318-14 (2014), 318-14: Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  2. Arslan, M.E., Agcakoca, E. and Senturk, M. (2020), "The effects of plaster thicknesses on cyclic behavior of infill walls with different materials", Period. Polytech. Civil Eng., 64(3), 678-689. https://doi.org/10.3311/PPci.15555.
  3. Bai, L., Zhang, C. and Xiong, E. (2019), "Investigations on the shear mechanism of steel-tube-reinforced concrete shear walls with a low shear-span ratio", KSCE J. Civil Eng., 23(7), 2983-2996. https://doi.org/10.1007/s12205-019-1170-3.
  4. Birtel, V. and Mark, P. (2006), "Parameterised finite element modelling of RC beam shear failure", ABAQUS Users' Conference 2006, Providence, RI, USA, November.
  5. Cheraghi, K., TahamouliRoudsari, M. and Kiasat, S. (2023a), "Numerical and analytical investigation of U-shape dampers and its effect on steel frames", Struct., 55, 498-509. https://doi.org/10.1016/j.istruc.2023.06.037.
  6. Cheraghi, K., TahamouliRoudsari, M., Kiasat, S. and Cheraghi, K. (2023b), "Numerical study of metallic dampers' effect on seismic performance of concrete frames", Asian J. Civil Eng., 2023, 1-11. https://doi.org/10.1007/s42107-023-00917-6.
  7. Cheraghi, K., TahamouliRoudsari, M., Kiasat, S. and Esfandiari, J. (2023c), "Numerical investigation of cyclic behavior of angled U-shaped yielding damper on steel frames", Period. Polytech. Civil Eng., 2023, 1. https://doi.org/10.3311/PPci.23213.
  8. Cheraghi, K., Tavana, M.H. and Aghayari, R. (2023d), "Investigating the effect of low-yield yielding dampers on the seismic behavior of steel frames", Period. Polytech. Civil Eng., 67(3), 925-935. https://doi.org/10.3311/PPci.21804.
  9. Chethan Gowda, R.K., Ashwini, K. and Rajashekaraswamy, H.M. (2020), "Effect of aspect ratio on fatigue behaviour of steel shear wall", Smart Technologies for Energy, Environment and Sustainable Development, Springer Singapore, Singapore.
  10. Craig Jr, R.R. and Taleff, E.M. (2020), Mechanics of Materials, John Wiley & Sons, Hoboken, NJ, USA.
  11. Derveni, F., Gerasimidis, S. and Peterman, K.D. (2020), "Behavior of cold-formed steel shear walls sheathed with high-capacity sheathing", Eng. Struct., 225, 111280. https://doi.org/10.1016/j.engstruct.2020.111280.
  12. Eurocode 2 (2004), Eurocode 2: Design of Concrete Structures - Part 1-1 : General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  13. FEMA-440 (2005), FEMA-440 Improvement of Nonlinear Static Seismic Analysis Procedures, Federal Emergency Management Agency, Washington, D.C., USA.
  14. Gholhaki, M. and Sabet, Z.E. (2016), "Interactional analysis of steel plate shear wall with thin plate using modified slope deflection method", KSCE J. Civil Eng., 20, 1852-1862. https://doi.org/10.1007/s12205-015-0288-1.
  15. Gholipour, M. and Alinia, M.M. (2016a), "A comparative study of the shell element and strip model methods for analysis of steel plate shear wall structures", Period. Polytech. Civil Eng., 60(4), 531-546. https://doi.org/10.3311/PPci.8475.
  16. Gholipour, M. and Alinia, M.M. (2016b), "Considerations on the pushover analysis of multi-story steel plate shear wall structures", Period. Polytech. Civil Eng., 60(1), 113-126. https://doi.org/10.3311/PPci.7706.
  17. Guo, L., Rong, Q., Ma, X. and Zhang, S. (2011), "Behavior of steel plate shear wall connected to frame beams only", Int. J. Steel Struct., 11(4), 467-479. https://doi.org/10.1007/s13296-011-4006-7.
  18. Hibbitt, K. and Sorensen, I. (2014), ABAQUS/Standard User's Manual Volumes I-III and ABAQUS CAE Manual, SIMULIA, Providence, RI, USA.
  19. Jankowiak, T. and Lodygowski, T. (2005), "Identification of parameters of concrete damage plasticity constitutive model", Found. Civil Environ. Eng., 6(1), 53-69
  20. Kakaletsis, D. and Karayannis, C. (2007), "Experimental investigation of infilled R/C frames with eccentric openings", Struct. Eng. Mech., 26(3), 231-250. https://doi.org/10.12989/sem.2007.26.3.231.
  21. Kaveh, A. and Farhadmanesh, M. (2019), "Optimal seismic design of steel plate shear walls using metaheuristic algorithms", Period. Polytech. Civil Eng., 63(1), 1-17. https://doi.org/10.3311/PPci.12119.
  22. Mo, J., Uy, B., Li, D., Thai, H.T. and Tran, H. (2021), "A review of the behaviour and design of steel-concrete composite shear walls", Struct., 31, 1230-1253. https://doi.org/10.1016/j.istruc.2021.02.041.
  23. Ozcelik, Y. and Clayton, P.M. (2017), "Strip model for steel plate shear walls with beam-connected web plates", Eng. Struct., 136, 369-379. https://doi.org/10.1016/j.engstruct.2017.01.051.
  24. Ozcelik, Y. and Clayton, P.M. (2018), "Seismic design and performance of SPSWs with beam-connected web plates", J. Constr. Steel Res., 142, 55-67. https://doi.org/10.1016/j.jcsr.2017.12.004.
  25. Qiu, J., Zhao, Q., Wang, Z. and Yu, C. (2022a), "Lateral behavior of trapezoidally corrugated wall plates in steel plate shear walls, Part 1: Elastic buckling", Thin Wall. Struct., 174, 109104. https://doi.org/10.1016/j.tws.2022.109104.
  26. Qiu, J., Zhao, Q., Yu, C. and Wang, Z. (2022b), "Lateral behavior of trapezoidally corrugated wall plates in steel plate shear walls, Part 2: Shear strength and post-peak behavior", Thin Wall. Struct., 174, 109103. https://doi.org/10.1016/j.tws.2022.109103.
  27. Shin, H.M., Lee, H.D. and Shin, K.J. (2018), "Shaking table test and analysis of reinforced concrete frame with steel shear wall with circular opening and slit damper", Int. J. Steel Struct., 18(4), 1420-1430. https://doi.org/10.1007/s13296-018-0161-4.
  28. TahamouliRoudsari, M., Cheraghi, K. and Aghayari, R. (2022), "Investigating the retrofit of RC frames using TADAS yielding dampers", Struct. Durab. Health Monit., 16(4), 343-359. https://doi.org/10.32604/sdhm.2022.07927.
  29. TahamouliRoudsari, M., Cheraghi, K. and Habibi, M.R. (2019a), "Investigation of retrofitting RC moment resisting frames with ADAS yielding dampers", Asian J. Civil Eng., 20(1), 125-133. https://doi.org/10.1007/s42107-018-0092-6
  30. TahamouliRoudsari, M., Entezari, A., Hadidi, M. and Gandomian, O. (2017), "Experimental assessment of retrofitted RC frames with different steel braces", Struct., 11, 206-217. https://doi.org/10.1016/j.istruc.2017.06.003.
  31. TahamouliRoudsari, M., Torkaman, M., Entezari, A.R., Rahimi, H. and Niazi K.K. (2019b), "Experimental investigation of strengthening reinforced concrete moment resisting frames using partially attached steel infill plate", Struct., 19, 173-183. https://doi.org/10.1016/j.istruc.2019.01.009.
  32. Wang, J., Wang, W., Xiao, Y. and Yu, B. (2019a), "Cyclic test and numerical analytical assessment of cold-formed thin-walled steel shear walls using tube truss", Thin Wall. Struct., 134, 442-459. https://doi.org/10.1016/j.tws.2018.09.038.
  33. Wang, W., Ren, Y., Lu, Z., Song, J., Han, B. and Zhou, Y. (2019b), "Experimental study of the hysteretic behaviour of corrugated steel plate shear walls and steel plate reinforced concrete composite shear walls", J. Constr. Steel Res., 160, 136-152. https://doi.org/10.1016/j.jcsr.2019.05.019.
  34. Zhang, H., Liu, H., Li, G. and Ning, X. (2019), "Seismic performance of encased steel plate-reinforced gangue concrete composite shear walls", KSCE J. Civil Eng., 23(7), 2919-2932. https://doi.org/10.1007/s12205-019-0286-9.