과제정보
The authors would like to acknowledge the support provided by the National Natural Science Foundation of China (NSFC, grant number: 52378313, 52178504).
참고문헌
- Barredo, E., Rojas, G.L., Mayen, J. and Flores-Hernandez, A.A. (2021), "Innovative negative-stiffness inerter-based mechanical networks", Int. J. Mech. Sci., 205, 106597. https://doi.org/10.1016/j.ijmecsci.2021.106597.
- Buckle, I.G. and Mayes, R.L. (1990), "Seismic isolation: History, application, and performance-A world view", Earthq. Spectra, 6(2), 161-201. https://doi.org/10.1193/1.1585564.
- Cakmak, D., Tomicevic, Z., Wolf, H., Bozic, Z. and Semenski, D. (2022), "Stability and performance of supercritical inerter-based active vibration isolation systems", J. Sound Vib., 518, 116234. https://doi.org/10.1016/j.jsv.2021.116234.
- Cakmak, D., Tomicevic, Z., Wolf, H., Bozic, Z., Semenski, D. and Trapic, I. (2019), "Vibration fatigue study of the helical spring in the base-excited inerter-based isolation system", Eng. Fail. Anal., 103, 44-56. https://doi.org/10.1016/j.engfailanal.2019.04.064.
- Cao, L. (2019), "High performance active tuned mass damper inerter for structures under the ground acceleration", Earthq. Struct., 16, 149-163. https://doi.org/10.12989/eas.2019.16.2.149.
- Chen, L., Nagarajaiah, S. and Sun, L. (2021), "A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control", J. Sound Vib., 494, 115814. https://doi.org/10.1016/j.jsv.2020.115814.
- Chowdhury, S. and Banerjee, A. (2022), "The exact closed-form expressions for optimal design parameters of resonating base isolators", Int. J. Mech. Sci., 224, 107284. https://doi.org/10.1016/j.ijmecsci.2022.107284.
- Chowdhury, S., Banerjee, A. and Adhikari, S. (2022), "Optimal negative stiffness inertial-amplifier-base-isolators: Exact closed-form expressions", Int. J. Mech. Sci., 218, 107044. https://doi.org/10.1016/j.ijmecsci.2021.107044.
- Chowdhury, S., Banerjee, A. and Adhikari, S. (2023), "The optimal configuration of negative stiffness inerter-based base isolators in multi-storey buildings", Struct., 50, 1232-1251. https://doi.org/10.1016/j.istruc.2023.02.095.
- De Domenico, D., Impollonia, N. and Ricciardi, G. (2018), "Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper", Soil Dyn. Earthq. Eng., 105, 37-53. https://doi.org/10.1016/j.soildyn.2017.11.023.
- De Domenico, D., Qiao, H., Wang, Q., Zhu, Z. and Marano, G. (2020a), "Optimal design and seismic performance of multi-tuned mass damper inerter (MTMDI) applied to adjacent high-rise buildings", Struct. Des. Tall Spec. Build., 29(14), e1781. https://doi.org/10.1002/tal.1781.
- De Domenico, D. and Ricciardi, G. (2018a), "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study", Struct. Control Health Monit., 25(10), e2234. https://doi.org/10.1002/stc.2234.
- De Domenico, D. and Ricciardi, G. (2018b), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. Dyn., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098.
- De Domenico, D., Ricciardi, G. and Zhang, R. (2020b), "Optimal design and seismic performance of tuned fluid inerter applied to structures with friction pendulum isolators", Soil Dyn. Earthq. Eng., 132, 106099. https://doi.org/10.1016/j.soildyn.2020.106099.
- De Domenico, D. and Ricciardi, G. (2018), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011.
- Di Matteo, A., Furtmuller, T., Adam, C. and Pirrotta, A. (2018), "Optimal design of tuned liquid column dampers for seismic response control of base-isolated structures", Acta Mech., 229(2), 437-454. https://doi.org/10.1007/s00707-017-1980-7.
- Di Matteo, A., Masnata, C. and Pirrotta, A. (2019), "Simplified analytical solution for the optimal design of tuned mass damper Inerter for base isolated structures", Mech. Syst. Signal Pr., 134, 106337. https://doi.org/10.1016/j.ymssp.2019.106337.
- Etedali, S., Hasankhoie, K. and Sohrabi, M.R. (2020), "Seismic responses and energy dissipation of pure-friction and resilient-friction base-isolated structures: A parametric study", J. Build. Eng., 29, 101194. https://doi.org/10.1016/j.jobe.2020.101194.
- Gao, H., Xing, C., Wang, H., Li, J. and Zhang, Y. (2023), "Performance improvement and demand-oriented optimum design of the tuned negative stiffness inerter damper for base-isolated structures", J. Build. Eng., 63, 105488. https://doi.org/10.1016/j.jobe.2022.105488.
- Gong, W., Tan, P. and Xiong, S. (2019), "Experimental and numerical studies on pseudo-negative-stiffness control of a base isolated building using magneto-rheological dampers", Smart Mater. Struct., 28(10), 18. https://doi.org/101088/1361-665X/ab0ead. 101088/1361-665X/ab0ead
- Gonzalez Buelga, A., Lazar, I., Jiang, J.Z., Neild, S. and Inman, D. (2016), "Assessing the effect of non-linearities on the performance of a tuned inerter damper", Struct. Control Health Monit., 24(3), e1879. https://doi.org/10.1002/stc.1879.
- Hartog., J.P.D. (1957), "Mechanical vibrations. Fourth edition. McGraw-Hill., New York, 1956. 67s. 6d", J. Royal Aeronaut. Soc., 61(554), 139-139. https://doi.org/10.1017/S0368393100131049.
- Hu, Y., Chen, M.Z.Q., Shu, Z. and Huang, L. (2015), "Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041.
- Iemura, H. and Pradono, M. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16, 784-799. https://doi.org/10.1002/stc.345.
- Islam, N. and Jangid, R. (2023a), "Seismic performance and control of elevated liquid storage tanks with negative stiffness and inerter-based dampers", Prac. Period. Struct. Des. Constr., 28(3), 04023022. https://doi.org/10.1061/PPSCFX.SCENG1306.
- Islam, N.U. and Jangid, R.S. (2023b), "Closed form expressions for H2 optimal control of negative stiffness and inerter-based dampers for damped structures", Struct., 50, 791-809. https://doi.org/10.1016/j.istruc.2023.02.065.
- Islam, N.U. and Jangid, R.S. (2023c), "Optimum parameters and performance of negative stiffness and inerter based dampers for base-isolated structures", Bull. Earthq. Eng., 21(3), 1411-1438. https://doi.org/10.1007/s10518-022-01372-5.
- Jangid, R. (2021), "Optimum tuned inerter damper for base-isolated structures", J. Vib. Eng. Technol., 9(7), 1483-1497. https://doi.org/10.1007/s42417-021-00309-7.
- Javidialesaadi, A. and Wierschem, N.E. (2019), "An inerter-enhanced nonlinear energy sink", Mech. Syst. Signal Pr., 129, 449-454. https://doi.org/10.1016/j.ymssp.2019.04.047.
- Kang, X., Li, S. and Hu, J. (2023), "Design and parameter optimization of the reduction-isolation control system for building structures based on negative stiffness", Build., 13(2), 489. https://doi.org/10.3390/buildings13020489.
- Kelly, J.M. (1990), "Base isolation: Linear theory and design", J. Earthq. Spectra, 6, 223-244. https://doi.org/10.1193/1.1585566
- Khoshnoudian, F. and Ahmadi, E. (2013), "Effects of pulse period of near-field ground motions on the seismic demands of soil-MDOF structure systems using mathematical pulse models", Earthq. Eng. Struct. Dyn., 42(11), 1565-1582. https://doi.org/10.1002/eqe.2287.
- Kontoni, D.P.N. and Farghaly, A.A. (2019), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17, 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
- Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390.
- Li, H., Bi, K. and Hao, H. (2023), "Development of a novel tuned negative stiffness inerter damper for seismic induced structural vibration control", J. Build. Eng., 70, 106341. https://doi.org/10.1016/j.jobe.2023.106341.
- Li, L. and Liang, Q. (2019), "Effect of inerter for seismic mitigation comparing with base isolation", Struct. Control Health Monit., 26(10), e2409. https://doi.org/10.1002/stc.2409.
- Lin, Y.K. (1967), Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, NY, USA.
- Long, Z., Shen, W. and Zhu, H. (2023), "On energy dissipation or harvesting of tuned viscous mass dampers for SDOF structures under seismic excitations", Mech. Syst. Signal Pr., 189, 110087. https://doi.org/10.1016/j.ymssp.2022.110087.
- Love, J.S., Tait, M.J. and Toopchi-Nezhad, H. (2011), "A hybrid structural control system using a tuned liquid damper to reduce the wind induced motion of a base isolated structure", Eng. Struct., 33(3), 738-746. https://doi.org/10.1016/j.engstruct.2010.11.027.
- Ma, R., Bi, K. and Hao, H. (2021), "Inerter-based structural vibration control: A state-of-the-art review", Eng. Struct., 243, 112655. https://doi.org/10.1016/j.engstruct.2021.112655.
- Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probab. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007.
- Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons, Hoboken, NJ, USA.
- Nigdeli, S. and Bekdas, G. (2014), "Optimum tuned mass damper approaches for adjacent structures", Earthq. Struct., 7, 1071-1091. https://doi.org/10.12989/eas.2014.7.6.1071.
- Nyangi, P. and Ye, K. (2021), "Optimal design of dual isolated structure with supplemental tuned inerter damper based on performance requirements", Soil Dyn. Earthq. Eng., 149, 106830. https://doi.org/10.1016/j.soildyn.2021.106830.
- Palazzo, B. (1991), "Seismic behavior of base-isolated buildings", Proceedings of International Meeting on earthquake Protection of Buildings, Ancona, Italy, June.
- Palazzo, B. and Petti, L. (1997), "Aspects of passive control of structural vibrations", Meccanica, 32(6), 529-544. https://doi.org/10.1023/A:1004244221103.
- Park, S.W., Ghasemi, H., Shen, J., Somerville, P.G., Yen, W.P. and Yashinsky, M. (2004), "Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 33(13), 1249-1270. https://doi.org/10.1002/eqe.395.
- Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2013), "Adaptive negative stiffness: New structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000615.
- Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861.
- Pu, W., Kasai, K., Kabando, E. and Huang, B. (2016), "Evaluation of the damping modification factor for structures subjected to near-fault ground motions", Bull. Earthq. Eng., 14, 1519-1544. https://doi.org/10.1007/s10518-016-9885-8.
- Pu, W., Wu, M., Huang, B. and Zhang, H. (2018), "Quantification of response spectra of pulse-like near-fault ground motions", Soil Dyn. Earthq. Eng., 104, 117-130. https://doi.org/10.1016/j.soildyn.2017.10.005.
- Qian, F., Luo, Y., Sun, H., Tai, W.C. and Zuo, L. (2019), "Optimal tuned inerter dampers for performance enhancement of vibration isolation", Eng. Struct., 198, 109464. https://doi.org/10.1016/j.engstruct.2019.109464.
- Salvi, J. and Rizzi, E. (2015), "Optimum tuning of tuned mass dampers for frame structures under earthquake excitation", Struct. Control Health Monit., 22(4), 707-725. https://doi.org/10.1002/stc.1710.
- Sarlis, A.A., Pasala, D.T.R., Constantinou, M.C., Reinhorn, A.M., Nagarajaiah, S. and Taylor, D.P. (2013), "Negative stiffness device for seismic protection of structures", J. Struct. Eng., 139(7), 1124-1133. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000616.
- Siami, A., Karimi, H.R., Cigada, A., Zappa, E. and Sabbioni, E. (2018), "Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pieta", Mech. Syst. Signal Pr., 98, 667-683. https://doi.org/10.1016/j.ymssp.2017.05.030.
- Smith, M. (2002), "Synthesis of mechanical networks: The inerter", J. IEEE Trans. Autom. Control., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532.
- Su, N., Bian, J., Peng, S., Chen, Z. and Xia, Y. (2023), "Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects", Mech. Syst. Signal Pr., 192, 110235. https://doi.org/10.1016/j.ymssp.2023.110235.
- Sun, H., Zuo, L., Xiuyong, W., Peng, J. and Wang, W. (2019), "Exact H2 optimal solutions to inerter-based isolation systems for building structures", Struct. Control Health Monit., 26(6), e2357. https://doi.org/10.1002/stc.2357.
- Tai, Y.J., Wang, H.D. and Chen, Z.Q. (2023), "Vibration isolation performance and optimization design of a tuned inerter negative stiffness damper", Int. J. Mech. Sci., 241, 107948. https://doi.org/10.1016/j.ijmecsci.2022.107948.
- Tai, Y., Huang, Z., Chen, C., Hua, X. and Chen, Z.Q. (2022), "Geometrically nonlinearity analysis and performance evaluation of tuned inerter dampers for multidirectional seismic isolation", Mech. Syst. Signal Pr., 168, 108681. https://doi.org/10.1016/j.ymssp.2021.108681.
- Taniguchi, T., Der Kiureghian, A. and Melkumyan, M. (2008), "Effect of tuned mass damper on displacement demand of base-isolated structures", Eng. Struct., 30, 3478-3488. https://doi.org/10.1016/j.engstruct.2008.05.027
- Tsai, H.C. (1995), "The effect of tuned-mass dampers on the seismic response of base-isolated structures", Int. J. Solid. Struct., 32(8), 1195-1210. https://doi.org/10.1016/0020-7683(94)00150-U.
- Wang, H., Gao, H., Li, J., Wang, Z., Ni, Y. and Liang, R. (2021), "Optimum design and performance evaluation of the tuned inerter-negative-stiffness damper for seismic protection of single-degree-of-freedom structures", Int. J. Mech. Sci., 212, 106805. https://doi.org/10.1016/j.ijmecsci.2021.106805.
- Wang, J., Zhang, Y. and Looi, D.T.W. (2023), "Analytical H∞ and H2 optimization for negative-stiffness inerter-based systems", Int. J. Mech. Sci., 249, 108261. https://doi.org/10.1016/j.ijmecsci.2023.108261.
- Xiang, P. and Nishitani, A. (2014), "Optimum design for more effective tuned mass damper system and its application to base-isolated buildings", Struct. Control Health Monit., 21(1), 98-114. https://doi.org/10.1002/stc.1556.
- Yang, J., Jiang, J.Z., Zhu, X. and Chen, H. (2017), "Performance of a dual-stage inerter-based vibration isolator", Procedia Eng., 199, 1822-1827. https://doi.org/10.1016/j.proeng.2017.09.097.
- Ye, K. and Nyangi, P. (2020), "H∞ optimization of tuned inerter damper with negative stiffness device subjected to support excitation", Shock Vib., 2020, 13. https://doi.org/10.1155/2020/7608078.
- Zhao, Z., Chen, Q., Hu, X. and Zhang, R. (2023a), "Enhanced energy dissipation benefit of negative stiffness amplifying dampers", Int. J. Mech. Sci., 240, 107934. https://doi.org/10.1016/j.ijmecsci.2022.107934.
- Zhao, Z., Chen, Q., Zhang, R., Pan, C. and Jiang, Y. (2020), "Energy dissipation mechanism of inerter systems", Int. J. Mech. Sci., 184, 105845. https://doi.org/10.1016/j.ijmecsci.2020.105845.
- Zhao, Z., Wang, Y., Chen, Q., Qiang, H. and Hong, N. (2023b), "Enhanced seismic isolation and energy dissipation approach for the aboveground negative-stiffness-based isolated structure with an underground structure", Tunnell. Undergr. Sp. Technol., 134, 105019. https://doi.org/10.1016/j.tust.2023.105019.
- Zhao, Z., Zhang, R., Jiang, Y. and Pan, C. (2019), "A tuned liquid inerter system for vibration control", Int. J. Mech. Sci., 164, 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171.
- Zhou, F. and Tan, P. (2018), "Recent progress and application on seismic isolation energy dissipation and control for structures in China", Earthq. Eng. Eng. Vib., 17(1), 19-27. https://doi.org/10.1007/s11803-018-0422-4.