DOI QR코드

DOI QR Code

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Shujin Li (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Wuchuan Pu (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Patrice Nyangi (Civil Engineering Department, Mbeya University of Science and Technology) ;
  • Amedee Sibomana (School of Civil Engineering and Architecture, Wuhan University of Technology)
  • Received : 2023.08.08
  • Accepted : 2023.10.26
  • Published : 2023.12.25

Abstract

In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

Keywords

Acknowledgement

The authors would like to acknowledge the support provided by the National Natural Science Foundation of China (NSFC, grant number: 52378313, 52178504).

References

  1. Barredo, E., Rojas, G.L., Mayen, J. and Flores-Hernandez, A.A. (2021), "Innovative negative-stiffness inerter-based mechanical networks", Int. J. Mech. Sci., 205, 106597. https://doi.org/10.1016/j.ijmecsci.2021.106597.
  2. Buckle, I.G. and Mayes, R.L. (1990), "Seismic isolation: History, application, and performance-A world view", Earthq. Spectra, 6(2), 161-201. https://doi.org/10.1193/1.1585564.
  3. Cakmak, D., Tomicevic, Z., Wolf, H., Bozic, Z. and Semenski, D. (2022), "Stability and performance of supercritical inerter-based active vibration isolation systems", J. Sound Vib., 518, 116234. https://doi.org/10.1016/j.jsv.2021.116234.
  4. Cakmak, D., Tomicevic, Z., Wolf, H., Bozic, Z., Semenski, D. and Trapic, I. (2019), "Vibration fatigue study of the helical spring in the base-excited inerter-based isolation system", Eng. Fail. Anal., 103, 44-56. https://doi.org/10.1016/j.engfailanal.2019.04.064.
  5. Cao, L. (2019), "High performance active tuned mass damper inerter for structures under the ground acceleration", Earthq. Struct., 16, 149-163. https://doi.org/10.12989/eas.2019.16.2.149.
  6. Chen, L., Nagarajaiah, S. and Sun, L. (2021), "A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control", J. Sound Vib., 494, 115814. https://doi.org/10.1016/j.jsv.2020.115814.
  7. Chowdhury, S. and Banerjee, A. (2022), "The exact closed-form expressions for optimal design parameters of resonating base isolators", Int. J. Mech. Sci., 224, 107284. https://doi.org/10.1016/j.ijmecsci.2022.107284.
  8. Chowdhury, S., Banerjee, A. and Adhikari, S. (2022), "Optimal negative stiffness inertial-amplifier-base-isolators: Exact closed-form expressions", Int. J. Mech. Sci., 218, 107044. https://doi.org/10.1016/j.ijmecsci.2021.107044.
  9. Chowdhury, S., Banerjee, A. and Adhikari, S. (2023), "The optimal configuration of negative stiffness inerter-based base isolators in multi-storey buildings", Struct., 50, 1232-1251. https://doi.org/10.1016/j.istruc.2023.02.095.
  10. De Domenico, D., Impollonia, N. and Ricciardi, G. (2018), "Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper", Soil Dyn. Earthq. Eng., 105, 37-53. https://doi.org/10.1016/j.soildyn.2017.11.023.
  11. De Domenico, D., Qiao, H., Wang, Q., Zhu, Z. and Marano, G. (2020a), "Optimal design and seismic performance of multi-tuned mass damper inerter (MTMDI) applied to adjacent high-rise buildings", Struct. Des. Tall Spec. Build., 29(14), e1781. https://doi.org/10.1002/tal.1781.
  12. De Domenico, D. and Ricciardi, G. (2018a), "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study", Struct. Control Health Monit., 25(10), e2234. https://doi.org/10.1002/stc.2234.
  13. De Domenico, D. and Ricciardi, G. (2018b), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. Dyn., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098.
  14. De Domenico, D., Ricciardi, G. and Zhang, R. (2020b), "Optimal design and seismic performance of tuned fluid inerter applied to structures with friction pendulum isolators", Soil Dyn. Earthq. Eng., 132, 106099. https://doi.org/10.1016/j.soildyn.2020.106099.
  15. De Domenico, D. and Ricciardi, G. (2018), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011.
  16. Di Matteo, A., Furtmuller, T., Adam, C. and Pirrotta, A. (2018), "Optimal design of tuned liquid column dampers for seismic response control of base-isolated structures", Acta Mech., 229(2), 437-454. https://doi.org/10.1007/s00707-017-1980-7.
  17. Di Matteo, A., Masnata, C. and Pirrotta, A. (2019), "Simplified analytical solution for the optimal design of tuned mass damper Inerter for base isolated structures", Mech. Syst. Signal Pr., 134, 106337. https://doi.org/10.1016/j.ymssp.2019.106337.
  18. Etedali, S., Hasankhoie, K. and Sohrabi, M.R. (2020), "Seismic responses and energy dissipation of pure-friction and resilient-friction base-isolated structures: A parametric study", J. Build. Eng., 29, 101194. https://doi.org/10.1016/j.jobe.2020.101194.
  19. Gao, H., Xing, C., Wang, H., Li, J. and Zhang, Y. (2023), "Performance improvement and demand-oriented optimum design of the tuned negative stiffness inerter damper for base-isolated structures", J. Build. Eng., 63, 105488. https://doi.org/10.1016/j.jobe.2022.105488.
  20. Gong, W., Tan, P. and Xiong, S. (2019), "Experimental and numerical studies on pseudo-negative-stiffness control of a base isolated building using magneto-rheological dampers", Smart Mater. Struct., 28(10), 18. https://doi.org/101088/1361-665X/ab0ead. 101088/1361-665X/ab0ead
  21. Gonzalez Buelga, A., Lazar, I., Jiang, J.Z., Neild, S. and Inman, D. (2016), "Assessing the effect of non-linearities on the performance of a tuned inerter damper", Struct. Control Health Monit., 24(3), e1879. https://doi.org/10.1002/stc.1879.
  22. Hartog., J.P.D. (1957), "Mechanical vibrations. Fourth edition. McGraw-Hill., New York, 1956. 67s. 6d", J. Royal Aeronaut. Soc., 61(554), 139-139. https://doi.org/10.1017/S0368393100131049.
  23. Hu, Y., Chen, M.Z.Q., Shu, Z. and Huang, L. (2015), "Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041.
  24. Iemura, H. and Pradono, M. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16, 784-799. https://doi.org/10.1002/stc.345.
  25. Islam, N. and Jangid, R. (2023a), "Seismic performance and control of elevated liquid storage tanks with negative stiffness and inerter-based dampers", Prac. Period. Struct. Des. Constr., 28(3), 04023022. https://doi.org/10.1061/PPSCFX.SCENG1306.
  26. Islam, N.U. and Jangid, R.S. (2023b), "Closed form expressions for H2 optimal control of negative stiffness and inerter-based dampers for damped structures", Struct., 50, 791-809. https://doi.org/10.1016/j.istruc.2023.02.065.
  27. Islam, N.U. and Jangid, R.S. (2023c), "Optimum parameters and performance of negative stiffness and inerter based dampers for base-isolated structures", Bull. Earthq. Eng., 21(3), 1411-1438. https://doi.org/10.1007/s10518-022-01372-5.
  28. Jangid, R. (2021), "Optimum tuned inerter damper for base-isolated structures", J. Vib. Eng. Technol., 9(7), 1483-1497. https://doi.org/10.1007/s42417-021-00309-7.
  29. Javidialesaadi, A. and Wierschem, N.E. (2019), "An inerter-enhanced nonlinear energy sink", Mech. Syst. Signal Pr., 129, 449-454. https://doi.org/10.1016/j.ymssp.2019.04.047.
  30. Kang, X., Li, S. and Hu, J. (2023), "Design and parameter optimization of the reduction-isolation control system for building structures based on negative stiffness", Build., 13(2), 489. https://doi.org/10.3390/buildings13020489.
  31. Kelly, J.M. (1990), "Base isolation: Linear theory and design", J. Earthq. Spectra, 6, 223-244. https://doi.org/10.1193/1.1585566
  32. Khoshnoudian, F. and Ahmadi, E. (2013), "Effects of pulse period of near-field ground motions on the seismic demands of soil-MDOF structure systems using mathematical pulse models", Earthq. Eng. Struct. Dyn., 42(11), 1565-1582. https://doi.org/10.1002/eqe.2287.
  33. Kontoni, D.P.N. and Farghaly, A.A. (2019), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17, 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
  34. Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390.
  35. Li, H., Bi, K. and Hao, H. (2023), "Development of a novel tuned negative stiffness inerter damper for seismic induced structural vibration control", J. Build. Eng., 70, 106341. https://doi.org/10.1016/j.jobe.2023.106341.
  36. Li, L. and Liang, Q. (2019), "Effect of inerter for seismic mitigation comparing with base isolation", Struct. Control Health Monit., 26(10), e2409. https://doi.org/10.1002/stc.2409.
  37. Lin, Y.K. (1967), Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, NY, USA.
  38. Long, Z., Shen, W. and Zhu, H. (2023), "On energy dissipation or harvesting of tuned viscous mass dampers for SDOF structures under seismic excitations", Mech. Syst. Signal Pr., 189, 110087. https://doi.org/10.1016/j.ymssp.2022.110087.
  39. Love, J.S., Tait, M.J. and Toopchi-Nezhad, H. (2011), "A hybrid structural control system using a tuned liquid damper to reduce the wind induced motion of a base isolated structure", Eng. Struct., 33(3), 738-746. https://doi.org/10.1016/j.engstruct.2010.11.027.
  40. Ma, R., Bi, K. and Hao, H. (2021), "Inerter-based structural vibration control: A state-of-the-art review", Eng. Struct., 243, 112655. https://doi.org/10.1016/j.engstruct.2021.112655.
  41. Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probab. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007.
  42. Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons, Hoboken, NJ, USA.
  43. Nigdeli, S. and Bekdas, G. (2014), "Optimum tuned mass damper approaches for adjacent structures", Earthq. Struct., 7, 1071-1091. https://doi.org/10.12989/eas.2014.7.6.1071.
  44. Nyangi, P. and Ye, K. (2021), "Optimal design of dual isolated structure with supplemental tuned inerter damper based on performance requirements", Soil Dyn. Earthq. Eng., 149, 106830. https://doi.org/10.1016/j.soildyn.2021.106830.
  45. Palazzo, B. (1991), "Seismic behavior of base-isolated buildings", Proceedings of International Meeting on earthquake Protection of Buildings, Ancona, Italy, June.
  46. Palazzo, B. and Petti, L. (1997), "Aspects of passive control of structural vibrations", Meccanica, 32(6), 529-544. https://doi.org/10.1023/A:1004244221103.
  47. Park, S.W., Ghasemi, H., Shen, J., Somerville, P.G., Yen, W.P. and Yashinsky, M. (2004), "Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 33(13), 1249-1270. https://doi.org/10.1002/eqe.395.
  48. Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2013), "Adaptive negative stiffness: New structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000615.
  49. Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861.
  50. Pu, W., Kasai, K., Kabando, E. and Huang, B. (2016), "Evaluation of the damping modification factor for structures subjected to near-fault ground motions", Bull. Earthq. Eng., 14, 1519-1544. https://doi.org/10.1007/s10518-016-9885-8.
  51. Pu, W., Wu, M., Huang, B. and Zhang, H. (2018), "Quantification of response spectra of pulse-like near-fault ground motions", Soil Dyn. Earthq. Eng., 104, 117-130. https://doi.org/10.1016/j.soildyn.2017.10.005.
  52. Qian, F., Luo, Y., Sun, H., Tai, W.C. and Zuo, L. (2019), "Optimal tuned inerter dampers for performance enhancement of vibration isolation", Eng. Struct., 198, 109464. https://doi.org/10.1016/j.engstruct.2019.109464.
  53. Salvi, J. and Rizzi, E. (2015), "Optimum tuning of tuned mass dampers for frame structures under earthquake excitation", Struct. Control Health Monit., 22(4), 707-725. https://doi.org/10.1002/stc.1710.
  54. Sarlis, A.A., Pasala, D.T.R., Constantinou, M.C., Reinhorn, A.M., Nagarajaiah, S. and Taylor, D.P. (2013), "Negative stiffness device for seismic protection of structures", J. Struct. Eng., 139(7), 1124-1133. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000616.
  55. Siami, A., Karimi, H.R., Cigada, A., Zappa, E. and Sabbioni, E. (2018), "Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pieta", Mech. Syst. Signal Pr., 98, 667-683. https://doi.org/10.1016/j.ymssp.2017.05.030.
  56. Smith, M. (2002), "Synthesis of mechanical networks: The inerter", J. IEEE Trans. Autom. Control., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532.
  57. Su, N., Bian, J., Peng, S., Chen, Z. and Xia, Y. (2023), "Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects", Mech. Syst. Signal Pr., 192, 110235. https://doi.org/10.1016/j.ymssp.2023.110235.
  58. Sun, H., Zuo, L., Xiuyong, W., Peng, J. and Wang, W. (2019), "Exact H2 optimal solutions to inerter-based isolation systems for building structures", Struct. Control Health Monit., 26(6), e2357. https://doi.org/10.1002/stc.2357.
  59. Tai, Y.J., Wang, H.D. and Chen, Z.Q. (2023), "Vibration isolation performance and optimization design of a tuned inerter negative stiffness damper", Int. J. Mech. Sci., 241, 107948. https://doi.org/10.1016/j.ijmecsci.2022.107948.
  60. Tai, Y., Huang, Z., Chen, C., Hua, X. and Chen, Z.Q. (2022), "Geometrically nonlinearity analysis and performance evaluation of tuned inerter dampers for multidirectional seismic isolation", Mech. Syst. Signal Pr., 168, 108681. https://doi.org/10.1016/j.ymssp.2021.108681.
  61. Taniguchi, T., Der Kiureghian, A. and Melkumyan, M. (2008), "Effect of tuned mass damper on displacement demand of base-isolated structures", Eng. Struct., 30, 3478-3488. https://doi.org/10.1016/j.engstruct.2008.05.027
  62. Tsai, H.C. (1995), "The effect of tuned-mass dampers on the seismic response of base-isolated structures", Int. J. Solid. Struct., 32(8), 1195-1210. https://doi.org/10.1016/0020-7683(94)00150-U.
  63. Wang, H., Gao, H., Li, J., Wang, Z., Ni, Y. and Liang, R. (2021), "Optimum design and performance evaluation of the tuned inerter-negative-stiffness damper for seismic protection of single-degree-of-freedom structures", Int. J. Mech. Sci., 212, 106805. https://doi.org/10.1016/j.ijmecsci.2021.106805.
  64. Wang, J., Zhang, Y. and Looi, D.T.W. (2023), "Analytical H∞ and H2 optimization for negative-stiffness inerter-based systems", Int. J. Mech. Sci., 249, 108261. https://doi.org/10.1016/j.ijmecsci.2023.108261.
  65. Xiang, P. and Nishitani, A. (2014), "Optimum design for more effective tuned mass damper system and its application to base-isolated buildings", Struct. Control Health Monit., 21(1), 98-114. https://doi.org/10.1002/stc.1556.
  66. Yang, J., Jiang, J.Z., Zhu, X. and Chen, H. (2017), "Performance of a dual-stage inerter-based vibration isolator", Procedia Eng., 199, 1822-1827. https://doi.org/10.1016/j.proeng.2017.09.097.
  67. Ye, K. and Nyangi, P. (2020), "H∞ optimization of tuned inerter damper with negative stiffness device subjected to support excitation", Shock Vib., 2020, 13. https://doi.org/10.1155/2020/7608078.
  68. Zhao, Z., Chen, Q., Hu, X. and Zhang, R. (2023a), "Enhanced energy dissipation benefit of negative stiffness amplifying dampers", Int. J. Mech. Sci., 240, 107934. https://doi.org/10.1016/j.ijmecsci.2022.107934.
  69. Zhao, Z., Chen, Q., Zhang, R., Pan, C. and Jiang, Y. (2020), "Energy dissipation mechanism of inerter systems", Int. J. Mech. Sci., 184, 105845. https://doi.org/10.1016/j.ijmecsci.2020.105845.
  70. Zhao, Z., Wang, Y., Chen, Q., Qiang, H. and Hong, N. (2023b), "Enhanced seismic isolation and energy dissipation approach for the aboveground negative-stiffness-based isolated structure with an underground structure", Tunnell. Undergr. Sp. Technol., 134, 105019. https://doi.org/10.1016/j.tust.2023.105019.
  71. Zhao, Z., Zhang, R., Jiang, Y. and Pan, C. (2019), "A tuned liquid inerter system for vibration control", Int. J. Mech. Sci., 164, 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171.
  72. Zhou, F. and Tan, P. (2018), "Recent progress and application on seismic isolation energy dissipation and control for structures in China", Earthq. Eng. Eng. Vib., 17(1), 19-27. https://doi.org/10.1007/s11803-018-0422-4.