DOI QR코드

DOI QR Code

Seismic damage vulnerability of empirical composite material structure of adobe and timber

  • Si-Qi Li (School of Civil Engineering, Heilongjiang University)
  • Received : 2022.09.14
  • Accepted : 2023.11.06
  • Published : 2023.12.25

Abstract

To study the seismic vulnerability of the composite material structure of adobe and timber, we collected and statistically analysed empirical observation samples of 542,214,937 m2 and 467,177 buildings that were significantly impacted during the 179 earthquakes that occurred in mainland China from 1976 to 2010. In multi-intensity regions, combined with numerical analysis and a probability model, a non-linear continuous regression model of the vulnerability, considering the empirical seismic damage area (number of buildings) and the ratio of seismic damage, was established. Moreover, a probability matrix model of the empirical seismic damage mean value was provided. Considering the coupling effect of the annual and seismic fortification factors, an empirical seismic vulnerability curve model was constructed in the multiple-intensity regions. A probability matrix model of the mean vulnerability index (MVI) was proposed, and was validated through the above-mentioned reconnaissance sample data. A matrix model of the MVI of the regions (19 provinces in mainland China) based on the parameter (MVI) was established.

Keywords

Acknowledgement

The bridge sample data of this study were derived from the seismic damage investigation database of the China Earthquake Administration (CAE) and the Wenchuan earthquake damage investigation team of the Institute of Engineering Mechanics of CAE. The research described in this paper was financially supported by the Fund of State Key Laboratory of Bridge Engineering Structural Dynamics (202104), Key Laboratory of Bridge Earthquake Resistance Technology, Ministry of Communications, PRC, Basic Scientific Research Business Expenses of Provincial Universities in Heilongjiang Province (2022-KYYWF-1056) and a project funded by Heilongjiang Postdoctoral Science Foundation (LBH-Z22294), China.

References

  1. Astroza, M., Ruiz, S. and Astroza, R. (2012), "Damage assessment and seismic intensity analysis of the 2010 (Mw 8.8) Maule earthquake", Earthq. Spectra, 28, 145-164. https://doi.org/10.1193/1.4000027.
  2. Briseghella, B., Demartino, C., Fiore, A., Nuti, C., Sulpizio, C., Vanzi, I., Lavorato, D. and Fiorentino, G. (2019), "Preliminary data and field observations of the 21st August 2017 Ischia earthquake", Bull. Earthq. Eng., 17(3), 1221-1256. https://doi.org/10.1007/s10518-018-0490-x.
  3. Binda, L., Saisi, A. and Tiraboschi, C. (2000), "Investigation procedures for the diagnosis of historic masonries", Constr. Build. Mater., 14(4), 199-233. https://doi.org/10.1016/S0950-0618(00)00018-0.
  4. Buratti, N., Minghini, F., Ongaretto, E., Savoia, M. and Tullini, N. (2017), "Empirical seismic fragility for the precast RC industrial buildings damaged by the 2012 Emilia (Italy) earthquakes", Earthq. Eng. Struct. Dyn., 46(14), 2317-2335. https://doi.org/10.1002/eqe.2906.
  5. China Earthquake Administration and National Bureau of Statistics (2001), Compilation of Loss Assessment for Earthquake Disasters in Mainland China (1996-2000), Earthquake Press, Beijing, China.
  6. China Earthquake Administration and National Bureau of Statistics (1996), Compilation of Loss Assessment for Earthquake Disasters in Mainland China (1990-1995), Earthquake Press, Beijing, China.
  7. China Earthquake Administration and National Bureau of Statistics (2005), Compilation of Loss Assessment for Earthquake Disasters in Mainland China (2001-2005), Earthquake Press, Beijing, China.
  8. Corradi, M., Borri, A. and Vignoli, A. (2002), "Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998", Constr. Build. Mater., 16(4), 229-239. https://doi.org/10.1016/S0950-0618(02)00014-4.
  9. Del Gaudio, C., Martino, G.D., Ludovico, M.D., Manfredi, G., Prota, A., Ricci, P. and Verderame, G.M. (2017), "Empirical fragility curves from damage data on RC buildings after the 2009 L'Aquila earthquake", Bull. Earthq. Eng., 15, 1425-1450. https://doi.org/10.1007/s10518-016-0026-1.
  10. Eleftheriadou, A.K. and Karabinis, A.I. (2013), "Evaluation of damage probability matrices from observational seismic damage data", Earthq. Struct., 4(3), 299-324. https://doi.org/10.12989/eas.2013.4.3.299.
  11. GB/T 17742-2008 (2008), The Chinese Seismic Intensity Scale, General Administration of Quality Inspection of the People's Republic of China, China.
  12. Hancilar, U., Taucer, F. and Corbane, C. (2013), "Empirical fragility functions based on remote sensing and field data after the 12 January 2010 Haiti Earthquake", Earthq. Spectra, 29(4), 1275-1310. https://doi.org/10.1193/121711EQS308M.
  13. Hu, Y.X. (2006), Earthquake Engineering, 2nd Edition, Earthquake Press, Beijing, China.
  14. Kassaras, I., Kalantoni, D., Pomonis, A., Kouskouna, V., Karababa, F. and Makropoulos, K. (2015), "Development of seismic damage scenarios in Lefkada old town (W. Greece): Part I-Vulnerability assessment of local constructions with the use of EMS-98", Bull. Earthq. Eng., 13(3), 799-825. https://doi.org/10.1007/s10518-014-9643-8.
  15. Lagomarsino, S. and Giovinazzin, S. (2006), "Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings", Bull. Earthq. Eng., 4, 415-443. https://doi.org/10.1007/s10518-006-9024-z.
  16. Lazzali, F. (2013), "Seismic vulnerability of Algerian reinforced concrete houses", Earthq. Struct., 5(5), 571-588. https://doi.org/10.12989/eas.2013.5.5.571.
  17. Li, S.Q. and Chen, Y.S. (2020), "Analysis of the probability matrix model for the seismic damage vulnerability of empirical structures", Nat. Hazards, 104(1), 705-730. https://doi.org/10.1007/s11069-020-04187-2.
  18. Li, S.Q., Chen, Y. and Yu, T. (2021a), "Comparison of macroseismic intensity scales by considering empirical observations of structural seismic damage", Earthq. Spectra, 37(1), 449-485. https://doi.org/10.1177/8755293020944174.
  19. Li, S.Q., Liu, H.B. and Chen, Y.S. (2021b), "Vulnerability models of brick and wood structures considering empirical seismic damage observations", Struct., 34, 2544-2565. https://doi.org/10.1016/j.istruc.2021.09.023.
  20. Li, S.Q. and Liu, H.B. (2022a), "Statistical and vulnerability prediction model considering empirical seismic damage of masonry structure", Struct., 39, 147-163. https://doi.org/10.1016/j.istruc.2022.03.024
  21. Li, S.Q. and Liu, H.B. (2022b), "Vulnerability prediction model of typical structures considering empirical seismic damage observation data", Bull. Earthq. Eng., 20, 5161-5203. https://doi.org/10.1007/s10518-022-01395-y.
  22. Li, S.Q. and Liu, H.B. (2022c), "Analysis of probability matrix model for seismic damage vulnerability of highway bridges", Geomatics, Nat. Hazards Risk, 13(1), 1395-1421. https://doi.org/10.1080/19475705.2022.2077146.
  23. Li, S.Q., Chen, Y.S., Liu, H.B., Du, K. and Chi, B. (2022d), "Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure", Earthq. Struct., 22(4), 387-399. https://doi.org/10.12989/eas.2022.22.4.387.
  24. Li, S.Q., Chen, Y.S., Liu, H.B. and Du, K. (2022e), "Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges", Earthq. Struct., 22(6), 609-623. https://doi.org/10.12989/eas.2022.22.6.609.
  25. Li, S.Q. and Liu, H.B. (2022f), "Comparison of vulnerabilities in typical bridges using macroseismic intensity scales", Case Stud. Constr. Mater., 16, e01094. https://doi.org/10.1016/j.cscm.2022.e01094.
  26. Li, S.Q. (2022a), "Analysis of an empirical seismic fragility prediction model of wooden roof truss buildings", Case Stud. Constr. Mater., 17, e01420. https://doi.org/10.1016/j.cscm.2022.e01420.
  27. Li, S.Q. (2023a), "Empirical resilience and vulnerability model of regional group structure considering optimized macroseismic intensity measure", Soil Dyn. Earthq. Eng., 164, 107630. https://doi.org/10.1016/j.soildyn.2022.107630.
  28. Li, S.Q., Chen, Y.S., Liu, H.B. and Del Gaudio, C. (2023b), "Empirical seismic vulnerability assessment model of typical urban buildings", Bull. Earthq. Eng., 21, 2217-2257. https://doi.org/10.1007/s10518-022-01585-8.
  29. Li, S.Q. (2023c), "Comparison of empirical structural vulnerability rapid prediction models considering typical earthquakes", Struct., 49, 377-401. https://doi.org/10.1016/j.istruc.2023.01.130
  30. Li, S.Q. and Gardoni, P. (2023d), "Empirical seismic vulnerability models for building clusters considering hybrid intensity measures", J. Build. Eng., 68, 106130. https://doi.org/10.1016/j.jobe.2023.106130.
  31. Li, S.Q. and Chen, Y.S. (2023e), "Vulnerability and economic loss evaluation model of a typical group structure considering empirical field inspection data", Int. J. Disaster Risk Reduct., 88, 103617. https://doi.org/10.1016/j.ijdrr.2023.103617.
  32. Li, S.Q. (2023f), "Empirical vulnerability estimation models considering updating the structural earthquake damage database", Soil Dyn. Earthq. Eng., 169, 107864. https://doi.org/10.1016/j.soildyn.2023.107864.
  33. Li, S.Q., Liu, H.B., Farsangi, E.F. and Du, K. (2023g), "Seismic fragility estimation considering field inspection of reinforced concrete girder bridges", Struct. Infrastr. Eng., 2023, 1-17. https://doi.org/10.1080/15732479.2023.2208565.
  34. Li, S.Q., Liu, H.B., Du, K., Han, J.C., Li, Y.R. and Yin, L.H. (2023h), "Empirical seismic vulnerability probability prediction model of RC structures considering historical field observation", Struct. Eng. Mech., 86(4), 547-571. https://doi.org/10.12989/sem.2023.86.4.547.
  35. Li, S.Q. (2023i), "Comparison of RC girder bridge and building vulnerability considering empirical seismic damage", Ain Shams Eng. J., 2023, 102287. https://doi.org/10.1016/j.asej.2023.102287.
  36. Li, S.Q. (2023j), "Simplified prediction model of structural seismic vulnerability considering a multivariate fuzzy membership algorithm", J. Earthq. Eng., 2023, 1-24. https://doi.org/10.1080/13632469.2023.2217945.
  37. Li, S.Q. and Formisano, A. (2023k), "Statistical model analysis of typical bridges considering the actual seismic damage observation database", Arch. Civil Mech. Eng., 23, 178. https://doi.org/10.1007/s43452-023-00720-9.
  38. Li, S.Q. and Gardoni, P. (2023l), "Seismic loss assessment for regional building portfolios considering empirical seismic vulnerability functions", Bull. Earthq. Eng., 2023, 1-31. https://doi.org/10.1007/s10518-023-01793-w.
  39. Li, S.Q. (2024a), "Improved seismic intensity measures and regional structural risk estimation models", Soil Dyn. Earthq. Eng., 176, 108256. https://doi.org/10.1016/j.soildyn.2023.108256.
  40. Liu, Y.H., Li, Z.Q., Wei, B.Y. Li, X.L. and Fu, B. (2019), "Seismic vulnerability assessment at urban scale using data mining and GIScience technology: Application to Urumqi (China)", Geomat. Nat. Hazards Risk, 10(1), 958-985. https://doi.org/10.1080/19475705.2018.1524400.
  41. Moroni, M.O., Astroza, M. and Acevedo, C. (2004), "Performance and seismic vulnerability of masonry housing types used in Chile", J. Perform. Constr. Facil., 18(3), 173-179. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:3(173).
  42. Mosoarca, M., Onescu, I., Onescu, E., Azap, B., Chieffo, N. and Szitar-Sirbu, M. (2019), "Seismic vulnerability assessment for the historical areas of the Timisoara city, Romania", Eng. Fail. Anal., 101, 86-112. https://doi.org/10.1016/j.engfailanal.2019.03.013.
  43. Qu, Z., Dutu, A., Zhong, J.R. and Sun, J.J. (2015), "Seismic damage of masonry infilled timber houses in the 2013 M7.0 Lushan earthquake in China", Earthq. Spectra, 31(3), 1859-1874. https://doi.org/ 10.1193/012914EQS023T.
  44. Riccadonna, D., Giongo, I., Schiro, G., Rizzi, E. and Parisi, M.A. (2019), "Experimental shear testing of timber -masonry dry connections for the seismic retrofit of unreinforced masonry shear walls", Constr. Build. Mater., 211, 52-72. https://doi.org/10.1016/j.conbuildmat.2019.03.145.
  45. Tsonos, A.G. (2007), "Effectiveness of CFRP-jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages", Struct. Eng. Mech., 27(4), 393-408. https://doi.org/10.12989/sem.2007.27.4.393.
  46. Tsonos, A.G. (2014), "An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method", Struct. Monit. Maint., 1(3), 323-338. https://doi.org/10.2495/MC090261.
  47. Yakut, A., Ozcebe, G. and Yucemen, S. (2006), "Seismic vulnerability assessment using regional empirical data", Earthq. Eng. Struct. Dyn., 35(10), 1187-1202. https://doi.org/10.1002/eqe.572.