Acknowledgement
This research was funded by Wonkwang University in 2021.
References
- Alam, J. Kim, D. and Choi, B. (2017), "Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula", Earthq. Struct., 13(4), 421-427. https://doi.org/10.12989/eas.2017.13.4.421.
- Brownlee, J. (2019), A Gentle Introduction to Dropout for Regularizing Deep Neural Networks; Machine Learning Mastery, San Juan, Puerto Rico. https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks
- Buratti, N., Ferracuti, B. and Savoia, M. (2010), "Response surface with random factors for seismic fragility of reinforced concrete frames", Struct. Saf., 32(1), 42-51. https://doi.10.1016/j.strusafe.2009.06.003.
- Cao, A.T., Nahar, T.T., Kim, D. and Choi, B. (2019), "Earthquake risk assessment of concrete gravity dam by cumulative absolute velocity and response surface methodology", Earthq. Struct., 17(5), 511-519. https://doi.org/10.12989/eas.2019.17.5.511.
- Dertat, A. (2018), Applied Deep Learning - Part 1: Artificial Neural Networks; Medium, San Francisco, CA, USA. https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
- Ellingwood, B.R. (2001), "Earthquake risk assessment of building structures", Reliab. Eng. Syst. Saf., 74(3), 251-262. https://doi.org/10.1016/S0951-8320(01)00105-3.
- Franchin, P., Lupoi, A., Pinto, P.E. and Schotanus, M.I. (2003), "Seismic fragility of reinforced concrete structures using a response surface approach", J. Earthq. Eng., 7(1), 45-77. https://doi.10.1080/13632460309350473.
- Gehl, P., Seyedi, D.M. and Douglas, J. (2013), "Vector-valued fragility functions for seismic risk evaluation", Bull. Earthq. Eng., 11(2), 365-384. https://doi.10.1007/s10518-012-9402-7.
- Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning (Adaptive Computation and Machine Learning Series), Illustrated Edition, The MIT Press, Cambridge, MA, USA.
- Han, S.W. and Choi, Y.S, (2008), "Seismic hazard analysis in low and moderate seismic region - Korean peninsula", Struct. Saf., 30(6), 543-558. https://doi.org/10.1016/j.strusafe.2007.10.004.
- Hu, Y., Zhao, J., Zhang, D. and Zhang, Y. (2018), "Seismic risk assessment of concrete-filled double-skin steel tube/moment-resisting frames", Earthq. Struct., 14(3), 249-259. https://doi.org/10.12989/eas.2018.14.3.249.
- Huang, C. and Huang, S. (2020), "Predicting capacity model and seismic fragility estimation for RC bridge based on artificial neural network", Struct., 27, 1930-1939. https://doi.org/10.1016/j.istruc.2020.07.063.
- Iman, R.L. and Conover, W.J. (1980), "Small sample sensitivity analysis techniques for computer models with an application to risk assessment", Commun. Theory Method., 9(17), 1749-1842. https://doi.org/10.1080/03610928008827996.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017), "ImageNet classification with deep convolutional neural networks", Commun. ACM, 60(6), 84-90. https://doi.org/10.1145/3065386.
- Korea Railroad Research Institute (2008), "Seismic performance evaluation of Korean railway infrastructures", Technical Report, Korea Railroad Research Institute.
- Mangalathu, S., Heo, G. and Jeon, J.S. (2018), "Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes", Eng. Struct., 162, 166-176. https://doi.org/10.1016/j.engstruct.2018.01.053.
- Mangalathu, S. and Jeon, J. (2019), "Stripe-based fragility analysis of multispan concrete bridge classes using machine learning techniques", Earthq. Eng. Struct. Dyn., 48(11), 1238-1255. https://doi.org/10.1002/eqe.3183.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2007), OpenSees Command Language Manual, University of California, Berkeley, Berkeley, CA, USA.
- Nielson, B.G. and DesRoches, R. (2007), "Analytical seismic fragility curves for typical bridges in the central and southeastern United States", Earthq. Spectra, 23(3), 615-633. https://doi.org/10.1193/1.2756815.
- Padgett, J.E., Ghosh, J. and Duenas-Osorio, L. (2013), "Effects of liquefiable soil and bridge modelling parameters on the seismic reliability of critical structural components", Struct. Infrastr. Eng., 9(1), 1-19. https://doi.org/10.1080/15732479.2010.524654.
- Pang, Y., Dang, X. and Yuan, W. (2014), "An artificial neural network based method for seismic fragility analysis of highway bridges", Adv. Struct. Eng., 17(3), 413-428. https://doi.org/10.1260/1369-4332.17.3.413.
- Polson, N. and Sokolov, V. (2020), "Deep learning: Computational aspects", WIREs Comput. Stat., 12(5), e1500. https://doi.org/10.1002/wics.1500.
- Park, J. and Choi, E. (2011), "Fragility analysis of track-on steelplate-girder railway bridges in Korea", Eng. Struct., 33(3), 696-705. https://doi.org/10.1016/j.engstruct.2010.09.028.
- Park, J., Towashiraporn, P., Craig, J.I. and Goodno, B.J. (2009), "Seismic fragility analysis of low-rise unreinforced masonry structures", Eng. Struct., 31(1), 125-137. https://doi.org/10.1016/j.engstruct.2008.07.021.
- Park, J. and Towashiraporn, P. (2014), "Rapid seismic damage assessment of railway bridges using the response-surface statistical model", Struct. Saf., 47(2), 1-12. https://doi.org/10.1016/j.strusafe.2013.10.001.
- Sainct, R., Feau, C., Martinez, J.M. and Garnier, J. (2020), "Efficient methodology for seismic fragility curves estimation by active learning on support vector machines", Struct. Saf., 86, 101972. https://doi.org/10.1016/j.strusafe.2020.101972.
- Seo, J. and Linzell, D.G. (2013), "Use of response surface metamodels to generate system level fragilities for existing curved steel bridges", Eng. Struct., 52, 642-653. https://doi.org/10.1016/j.engstruct.2013.03.023.
- Singhal, A. and Kiremidjian, A.S. (1996), "Method for probabilistic evaluation of seismic structural damage", J. Struct. Eng., 122(12), 1459-1467. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459).
- Spiridonakos, M.D. and Chatzi, E.N. (2015), "Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation", Earthq. Struct., 8(4), 915-934. https://doi.org/10.12989/eas.2015.8.4.91.
- Towashiraporn, P., Duenas-Osorio, L., Craig, J.I. and Goodno, B.J. (2008), "An application of the response surface metamodel in building seismic fragility estimation", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Ujjwalkarn, U. (2016), A Quick Introduction to Neural Networks; The Data Science Blog. https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
- Yang, T., Yuan, X., Zhong, J. and Yuan, W. (2020), "Near-fault pulse seismic ductility spectra for bridge columns based on machine learning", Soil Dyn. Earthq. Eng., 164, 107582. https://doi.org/10.1016/j.soildyn.2022.107582.
- Wong, J. (2020), Group Normalization - Jason Wong, Medium, San Francisco, CA, USA. https://jwong853.medium.com/group-normalization-explained-d52edbc6f062
- Wu, Y. and He, K. (2020), "Group normalization", Int. J. Comput. Vision, 128(3), 742-755. https://doi.org/10.1007/s11263-019-01198-w.
- Xie, Y., Zhang, J., DesRoches, R. and Padgett, J.E. (2019), "Seismic fragilities of single-column highway bridges with rocking column-footing", Earthq. Eng. Struct. Dyn., 48(7), 843-864. https://doi.org/10.1002/eqe.3164.
- Zhong, J., Zhu, Y., Zheng, X. and Han, Q. (2023), "Multivariable probabilistic seismic demand models for parametric fragility prediction of isolated bridges portfolios under pulse-like GMs", Eng. Struct., 292, 116517. https://doi.org/10.1016/j.engstruct.2023.116517.