DOI QR코드

DOI QR Code

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2022.05.05
  • Accepted : 2023.07.05
  • Published : 2023.12.25

Abstract

In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

Keywords

References

  1. Alghanmi, R.A. and Zenkour, A.M. (2021), "Effect of porosity on the bending of functionally graded plates integrated with PFRC layer", Eur. Phys. J. Plus, 136(2), 142. https://doi.org/10.1140/epjp/s13360-021-01123-6.
  2. Alnujaie, A., Akba, E.D., Eltaher, M. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://doi.org/10.12989/gae.2021.24.1.091.
  3. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.
  4. Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  5. Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nano composite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlin. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  6. Assie, A.E., Mohamed, S.A., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
  7. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2018), "Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate", Compos. Part B: Eng., 151, 35-50. http://doi.org/10.1016/j.compositesb.2018.05.050.
  8. Attia, M.A. and Mohamed, S.A. (2020a), "Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory", Eng. Comput., 2020, 1-27. https://doi.org/10.1007/s00366-020-01188-4.
  9. Attia, M.A. and Mohamed, S.A. (2020b), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 2022, 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  10. Babaei, H. and Eslami, M.R. (2021), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Math. Model., 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004.
  11. Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.
  12. Babaei, H. (2022a), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math Comput., 413, 126606. https://doi.org/10.1016/j.amc.2021.126606.
  13. Babaei, H. (2021a), "Large deflection analysis of FG-CNT reinforced composite pipes under thermal-mechanical coupling loading", Struct., 34, 886-900. https://doi.org/10.1016/j.istruc.2021.07.091.
  14. Babaei, H. (2022b), "Thermomechanical analysis of snap-buckling phenomenon in long FG-CNTRC cylindrical panels resting on nonlinear elastic foundation", Compos. Struct., 286, 115199. https://doi.org/10.1016/j.compstruct.2022.115199.
  15. Babaei, H. (2021b), "Thermoelastic buckling and post-buckling behavior of temperature-dependent nanocomposite pipes reinforced with CNTs", Eur. Phys. J. Plus, 136(10), 1093. https://doi.org/10.1140/epjp/s13360-021-01992-x.
  16. Barretta, R., Ali Faghidian, S. and Marotti de Sciarra, F., Penna, R. and Pinnola F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550.
  17. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel. Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
  18. Bellifa, H., Selim, M.M. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719.
  19. Chen, S.H. and Cheung, Y.K. (1996), "A modified Lindstedt-Poincare method for a strongly nonlinear system with quadratic and cubic nonlinearities", Shock Vib., 3(4), 279-285. https://doi.org/10.1155/1996/231241.
  20. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  21. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
  22. Dhuria, M., Grover, N. and Goyal, K. (2021), "Influence of porosity distribution on static and buckling responses of porous functionally graded plates", Struct., 34, 1458-1474. https://doi.org/10.1016/j.istruc.2021.08.050.
  23. Ding, H.X., Eltaher, M.A. and She, G.L. (2023), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
  24. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
  25. Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  26. Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  27. Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23, 97. http://doi.org/10.1007/s43452-023-00634-6.
  28. Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlinear Dyn., 2023, 1-30. http://doi.org/10.1007/s11071-023-08564-x.
  29. Ebrahimi, F. and Barati, M. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159(1), 174-182. http://doi.org/10.1016/j.compstruct.2016.09.058.
  30. Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026.
  31. Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019b), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
  32. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  33. Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
  34. Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
  35. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect three-layered sheardeformable micro beams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001.
  36. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Dynamic characterisation of functionally graded imperfect Kirchhof microplates", Compos. Struct., 179, 720-731. https://doi.org/10.1016/j.compstruct.2017.04.075.
  37. Golmakani, M.E., Malikan, M. and Pour, S.G. (2021), "Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method", Contin. Mech. Thermodyn., 2021, 1-20. https://doi.org/10.1007/s00161-021-00995-4.
  38. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
  39. Hadji, L. and Tounsi, A. (2021), "Static deflections and stress distribution of functionally graded sandwich plates with porosity", Smart Struct. Syst., 28(3), 343-354. https://doi.org/10.12989/sss.2021.28.3.343.
  40. Hadji, L., Fallah, A. and Aghdam, M.M. (2022), "Influence of the distribution pattern of porosity on the free vibration of functionally graded plates", Struct. Eng. Mech., 82(2), 151-161. https://doi.org/10.12989/sem.2022.82.2.151.
  41. Hendi, A., Eltaher, M.A., Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/10.12989/scs.2021.41.6.787.
  42. Heydari, A. (2018), "Exact vibration and buckling analyses ofarbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., 28(5), 589-606. http://doi.org/10.12989/scs.2018.28.5.589.
  43. Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel. Compos. Struct., 46(5), 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
  44. Liu, H., Lv, Z. and Wu, H. (2019), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos. Struct., 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090.
  45. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  46. Mahesh, V. (2021), "Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading", Mech. Adv. Mater. Struct., 29(19), 2707-2725. https://doi.org/10.1080/15376494.2021.1875086.
  47. Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compos. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
  48. Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2023), "Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints", Math., 10(24), 4784. http://doi.org/10.3390/math10244784.
  49. Meksi, A., Benyoucef, S., Sekkal, M., Bouiadjra, R.B., Selim, M. M., Tounsi, A. and Hussain, M. (2021), "Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading", Steel Compos. Struct., 39(2), 215-228. https://doi.org/10.12989/scs.2021.39.2.215.
  50. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. http://doi.org/10.1007/s00366-020-00976-2.
  51. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. http://doi.org/10.12989/sem.2019.70.6.737.
  52. Pathan, F., Singh, S., Natarajan, S. and Watts, G. (2022), "An analytical solution for the static bending of smart laminated composite and functionally graded plates with and without porosity", Arch. Appl. Mech., 92(3), 903-931. https://doi.org/10.1007/s00419-021-02080-3.
  53. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  54. Sah, S.K. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
  55. Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015), "On the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to radial compression including surface stress effects", Compos. Struct., 131, 414-424. https://doi.org/10.1016/j.compstruct.2015.05.031.
  56. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
  57. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  58. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  59. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  60. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  61. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  62. Shen, H.S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley & Sons Inc., Capitol Singapore, Singapore.
  63. Song, J.P. and She, G.L. (2023), "Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions", Struct. Eng. Sci., 86(3), 361-371. https://doi.org/10.12989/sem.2023.86.3.361.
  64. Wu, F. and She, G.L. (2023), "Wave propagation in double nanobeams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495.
  65. Wu, H. and Liu, H. (2020), "Nonlinear thermo-mechanical response of temperature-dependent FG sandwich nanobeams with geometric imperfection", Eng. Comput., 37(4), 3375-3395. https://doi.org/10.1007/s00366-020-01005-y.
  66. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  67. Xu, J.Q. and She, G.L. (2023), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
  68. Xu, J.Q., She, G.L., Li. Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection", Steel Compos. Struct., 47(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
  69. Zhang, D.G. (2014), "Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Meccanica, 49(2), 283-293. https://doi.org/10.1007/s11012-013-9793-9.
  70. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
  71. Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
  72. Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  73. Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
  74. Zhang, Y.W., Ding, H.X., She, G.L. and Tounsi, A. (2023d), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.
  75. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  76. Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
  77. Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 2023, 1-13. https://doi.org/10.1080/15376494.2023.2180556.
  78. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  79. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  80. Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465.