Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2023R1A2C2005101).
References
- ACI (2017), 318 Building Code Requirements for Structural Concrete ACI 318-95, American Concrete Institute, Farmington Hills, MI, USA.
- Akiba, T., Sano, S., Yanase, T., Ohta, T. and Koyama, M. (2019), "Optuna: A next-generation hyperparameter optimization framework", Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, August.
- Anderberg, Y. and Thelandersson, S. (1976), Stress and Deformation Characteristics of Concrete: Experimental Investigation and Material Behaviour Model, Lund Institute of Technology, Lund, Sweden.
- ANSI/AISC 360-16 (2010), ANSI/AISC 360-10: Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
- Baharudin, M.E. (2017), "Modelling the structural response of reinforced concrete slabs exposed to fire: Validation , sensitivity and consequences for analysis and design" , Ph.D. Dissertation, University of Edinburg, Edinburgh, UK.
- Banerji, S., Kodur, V. and Solhmirzaei, R. (2020), "Experimental behavior of ultra high performance fiber reinforced concrete beams under fire conditions", Eng. Struct., 208, 110316. https://doi.org/10.1016/j.engstruct.2020.110316.
- Biau, G. and Scornet, E. (2016), "A random forest guided tour", Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0481-7.
- Bratina, S., Saje, M. and Planinc, I. (2007), "The effects of different strain contributions on the response of RC beams in fire", Eng. Struct., 29(3), 418-430. https://doi.org/10.1016/j.engstruct.2006.05.008.
- British Standard Institution (2004), Eurocode 1994-1-1: Design of Composite Steel and Concrete Structures - Part 1-1: Gerenal Rules and Rules for Buildings, European Committee for Standardization, European Committee for Standardization, Brussels, Belgium..
- British Standard Institution (2004), Eurocode 1994-1-2: Design of Concrete Structures - Part 1-2: Gerenal Rules - Structural Fire Design, European Committee for Standardization, Brussels, Belgium.
- Cai, B., Pan, G. and Fu, F. (2020), "Prediction of the postfire flexural capacity of RC beam using GA-BPNN machine learning", J. Perform. Constr. Facil., 34(6), 04020105. https://doi.org/10.1061/(asce)cf.1943-5509.0001514.
- Carbonneau, R., Laframboise, K. and Vahidov, R. (2008), "Application of machine learning techniques for supply chain demand forecasting", Eur. J. Operat. Res., 184(3), 1140-1154. https://doi.org/10.1016/j.ejor.2006.12.004.
- Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators", Expert Syst. Appl., 40(17), 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037.
- Chang, C.M., Lin, T.K. and Chang, C.W. (2018), "Applications of neural network models for structural health monitoring based on derived modal properties", Measure., 129, 457-470. https://doi.org/10.1016/j.measurement.2018.07.051.
- Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029.
- Chaudhary, R.K., Roy, T. and Matsagar, V. (2020), "Member and structural fragility of reinforced concrete structure under fire", J. Struct. Fire Eng., 11(4), 409-435. https://doi.org/10.1108/JSFE-02-2019-0015.
- Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August.
- Ding, F.X., Li, Z., Cheng, S.S. and Yu, Z.W. (2018), "Stress redistribution of simply supported reinforced concrete beams under fire conditions", J. Central South Univ., 25(9), 2093-2106. https://doi.org/10.1007/s11771-018-3899-0.
- Galatzer-Levy, I.R., Karstoft, K.I., Statnikov, A. and Shalev, A.Y. (2014), "Quantitative forecasting of PTSD from early trauma responses: A machine learning application", J. Psychiatr. Res., 59, 68-76. https://doi.org/10.1016/j.jpsychires.2014.08.017.
- Ghafari, E., Bandarabadi, M., Costa, H. and Julio, E. (2015), "Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model", J. Mater. Civil Eng., 27(11), 04015017. https://doi.org/10.1061/(asce)mt.1943-5533.0001270.
- Han, L.H. and Huo, J.S. (2002), "Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard", J. Struct. Eng., 129(1), 68-78. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(68)
- Harmathy, T. (1967), "A comprehensive creep model", J. Basic Eng., 89, 496-502. https://doi.org/10.1115/1.3609648.
- Huang, Z., Asce, M., Burgess, I.W. and Plank, R.J. (2009), "Three-dimensional analysis of reinforced concrete beam-column structures in fire", J. Struct. Eng., 135(10), 1201-1212. https://doi.org/10.1061/ASCE0733-94452009135:101201.
- Hwang, J.Y. and Kwak, H.G. (2018), "Evaluation of post-fire residual resistance of RC columns considering non-mechanical deformations", Fire Saf. J., 100, 128-139. https://doi.org/10.1016/j.firesaf.2018.08.003.
- Jiao, P., Roy, M., Barri, K., Zhu, R., Ray, I. and Alavi, A.H. (2019), "High-performance fiber reinforced concrete as a repairing material to normal concrete structures: Experiments, numerical simulations and a machine learning-based prediction model", Constr. Build. Mater., 223, 1167-1181. https://doi.org/10.1016/j.conbuildmat.2019.07.312.
- KDS (2021), KDS 14 20 50, Ministry of Land, Infrastructure and Transport, Sejong City, Korea.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T.Y. (2017), "Lightgbm: A highly efficient gradient boosting decision tree", Adv. Neural Informat. Process. Syst., 2017, 3147-3155.
- Kim, B. and Cho, S. (2018), "Automated vision-based detection of cracks on concrete surfaces using a deep learning technique", Sensors, 18(10), 3452. https://doi.org/10.3390/s18103452.
- Kodur, V.K.R., Cheng, F.P., Wang, T.C. and Sultan, M.A. (2003), "Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns", J. Struct. Eng., 129(2), 253-259. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(253).
- Kumar, S. (2011), Neural Networks: A Classroom Approach, McGraw-Hill Education India, Uttar Pradesh, India.
- LaMalva, K. and Hopkin, D. (2021), SFPES: International Handbook of Structural Fire Engineering, Springer International Publishing, Cham, Switzerland.
- Lewis, R.J. (2000), "An Introduction to Classification and Regression Tree ( CART ) Analysis", Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California, San Francisco, CA, USA, May.
- Lie, T.T. and Lin, T.D. (1985), Fire Performance of Reinforced Concrete Columns, ASTM International, West Conshohocken, PA, USA.
- Ly, H.B. (2020), "Erratum: Computational hybrid machine learning based prediction of shear capacity for steel fiber reinforced concrete beams" Sustainab., 12(17), 2709. https://doi.org/10.3390/su12177029.
- Mangalathu, S., Jang, H., Hwang, S.H. and Jeon, J.S. (2020), "Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls", Eng. Struct., 208, 110331. https://doi.org/10.1016/j.engstruct.2020.110331.
- Martinez-Martinez, F., Ruperez-Moreno, M.J., Martinez-Sober, M., Solves-Llorens, J.A., Lorente, D., Serrano-Lopez, A.J. and Martin-Guerrero, J.D. (2017), "A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time", Comput. Biol. Med., 90, 116-124. https://doi.org/10.1016/j.compbiomed.2017.09.019.
- Ogunleye, A. and Wang, Q.G. (2020), "XGBoost model for chronic kidney disease diagnosis", IEEE/ACM Trans. Comput. Biol. Bioinformat., 17(6), 2131-2140. https://doi.org/10.1109/TCBB.2019.2911071.
- Olalusi, O.B. and Awoyera, P.O. (2021), "Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning", Eng. Struct., 227, 111470. https://doi.org/10.1016/j.engstruct.2020.111470.
- Ozbolt, J., Bosnjak, J., Periskic, G. and Sharma, A. (2014), "3D numerical analysis of reinforced concrete beams exposed to elevated temperature", Eng. Struct., 58, 166. https://doi.org/10.1016/j.engstruct.2012.11.030.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G. and Chintala, S. (2019), "PyTorch: An imperative style, high-performance deep learning library", Adv. Neural Informat. Process. Syst., 2019, 32.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. and Duchesnay, E. (2011), "Scikit-learn: Machine learning in Python", J. Mach. Learn. Res., 12, 2825-2830.
- Pyl, L., Schueremans, L., Dierckx, W. and Georgieva, I. (2012), "Fire safety analysis of a 3D frame structure based on a full-scale fire test", Thin Wall. Struct., 61, 204-212. https://doi.org/10.1016/j.tws.2012.03.023.
- Rafiei, M.H., Khushefati, W.H., Demirboga, R. and Adeli, H. (2016), "Neural network, machine learning, and evolutionary approaches for concrete material characterization", ACI Mater. J., 113(6), 781-789. https://doi.org/10.14359/51689360.
- Ray, S. (2019), "A quick review of machine learning algorithms", Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon2019, Faridabad, India, February.
- Rezaiee-Pajand, M. and Karimipour, A. (2021), "Crack spacing prediction of fibre-reinforced concrete beams with lap-spliced bars by machine learning models", Iran. J. Sci. Technol. Trans. Civil Eng., 45(2), 833-850. https://doi.org/10.1007/s40996-020-00441-6.
- Soman, K.P. (2009), Machine Learning with SVM and Other Kernel Methods, PHI Learning Pvt. Ltd., New Delhi, Delhi, India.
- Stanwick, S. (2003), A Cool Mist, NRC Publications Archive Archives des Publications du CNRC, National Research Council Canada, Ottawa, Ontario, Canada.
- Suwondo, R., Cunningham, L., Gillie, M. and Bailey, C. (2021), "Analysis of the robustness of a steel frame structure with composite floors subject to multiple fire scenarios", Adv. Struct. Eng., 24(10), 2076-2089. https://doi.org/10.1177/1369433221992494.