DOI QR코드

DOI QR Code

Optimization of hybrid composite plates using Tsai-Wu Criteria

  • Mehmet Hanifi Dogru (Pilotage Department, Aeronautics and Aerospace Faculty, University of Gaziantep) ;
  • Ibrahim Gov (Aerospace Engineering Department, Aeronautics and Aerospace Faculty, University of Gaziantep) ;
  • Eyup Yeter (Aerospace Engineering Department, Aeronautics and Aerospace Faculty, University of Gaziantep) ;
  • Kursad Gov (Aerospace Engineering Department, Aeronautics and Aerospace Faculty, University of Gaziantep)
  • Received : 2023.02.03
  • Accepted : 2023.11.03
  • Published : 2023.11.25

Abstract

In this study, previously developed algorithm is used for Optimization of hybrid composite plates using Tsai-Wu criteria. For the stress-based Design Optimization problems, Von-Mises stress uses as design variable for isotropic materials. Maximum stress, maximum strain, Tsai Hill, and Tsai-Wu criteria are generally used to determine failure of composite materials. In this study, failure index value is used as design variable in the optimization algorithm and Tsai-Wu criteria is utilized to calculate this value. In the analyses, commonly used design domains according to different hybrid orientations are optimized and results are presented. When the optimization algorithm was applied, 50% material reduction was obtained without exceeding allowable failure index value.

Keywords

References

  1. Apalak, K., Yildirim, M. and Ekici, R. (2008), "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions", Compos. Sci. Technol., 68(2), 537-550. https://doi.org/10.1016/j.compscitech.2007.06.031.
  2. Baran, I., Ozgen, G.O. and Cigeroglu, E. (2011), "Bir radar anten yapisinin titresim ozelliklerinin topolojik optimizasyon teknigi ve destek elemanlari kullanilarak iyilestirilmesi", Proceedings of the 15th Ulusal Makine Teorisi Sempozyumu, Nigde, Turkiye.
  3. Borrvall, T. and Petersson, J. (2003), "Topology optimization of fluids in Stokes flow", Int. J. Numer. Meth. Fluid., 41, 77-107. https://doi.org/10.1002/fld.426.
  4. Bruggi, M. and Taliercio, A. (2013), "Topology optimization of the fiber-reinforcement retrofitting existing structures", Int. J. Solid. Struct., 50(1), 121-136. https://doi.org/10.1016/j.ijsolstr.2012.09.009.
  5. Cai, J., Yang, Z., Wang, C. and Ding, J. (2022), "Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads", Struct. Eng. Mech., 81(3), 267-280. https://doi.org/10.12989/sem.2022.81.3.267.
  6. Cardoso, J.B. and Valido, A.J. (2011), "Cross-section optimal design of composite laminated thin-walled beams", Comput. Struct., 89(11-12), 1069-1076. http://doi.org/10.1016/j.compstruc.2010.12.009.
  7. Chu, S., Xiao, M., Gao, L., Zhang, Y. and Zhang, J. (2021), "Robust topology optimization for fiber-reinforced composite structures under loading uncertainty", Comput. Meth. Appl. Mech. Eng., 384, 113935. https://doi.org/10.1016/j.cma.2021.113935.
  8. Di Sciuva, M., Gherlone, M. and Lomario, D. (2003), "Multiconstrained optimization of laminated and sandwich plates using evolutionary algorithms and higher-order plate theories", Compos. Struct., 59(1), 149-154. https://doi.org/10.1016/S0263-8223(02)00132-0.
  9. Dogru, M.H. (2017), "An improved algorithm for optimization of composite plates using tsai-wu criteria", J. Facult. Eng. Arch. Gazi Univ., 32(3), 821-829. https://doi.org/10.17341/gazimmfd.337630.
  10. Duysinx, P. and Bendsoe, M.P. (1998), "Topology optimization of continuum structures with local stress constraints", Int. J. Numer. Meth. Eng., 43(8), 1453-1478. https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2.
  11. Gao, T., Weihong, Z. and Pierre, D. (2012), "A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate", Int. J. Numer. Meth. Eng., 91, 98-114. https://doi.org/10.1002/nme.4270.
  12. Gao, T., Weihong, Z. and Pierre, D. (2013), "Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint", Struct. Multidisc. Optim., 48, 1075-1088. https://doi.org/10.1007/s00158-013-0948-z
  13. Gov, I. (2017), "A novel approach for design of fiber angle and layer number of composite plates", Polym. Compos., 38(2), 268-276. https://doi.org/10.1002/pc.23584.
  14. Hansel, W. and Becker, W. (1999), "Layerwise adaptive topology optimization of laminate structures", Eng. Comput., 16(7), 841-851. https://doi.org/10.1108/02644409910298156. 
  15. Hansel, W., Treptow, A., Becker, W. and Freisleben, B. (2002), "A heuristic and a genetic topology optimization algorithm for weight-minimal laminate structures", Compos. Struct., 58(2), 287-294. https://doi.org/10.1016/S0263-8223(02)00048-X.
  16. Ichihara, N. and Ueda, M. (2023), "3D-printed high-toughness composite structures by anisotropic topology optimization", Compos. Part B: Eng., 253, 110572. https://doi.org/10.1016/j.compositesb.2023.110572.
  17. Ivanov, I.V. (2006), "Analysis, modelling, and optimization of laminated glasses as plane beam", Int. J. Solid. Struct., 43(22-23), 6887-6907. https://doi.org/10.1016/j.ijsolstr.2006.02.014.
  18. Johansen, L.S., Lund, E. and Kleist, J. (2009), "Failure optimization of geometrically linear/nonlinear laminated composite structures using a two-step hierarchical model adaptivity", Comput. Meth. Appl. Mech. Eng., 198, 2421-2438. https://doi.org/10.1016/j.cma.2009.02.033.
  19. Kalantari, M., Dong, C. and Davies, I.J. (2017), "Effect of matrix voids, fibre misalignment and thickness variation on multi-objective robust optimization of carbon/glass fibre-reinforced hybrid composites under flexural loading", Compos. Part B: Eng., 123, 136-147. https://doi.org/10.1016/j.compositesb.2017.05.022.
  20. Ma, Z.D., Kikuchi, N., Pierre, C. and Raju, B. (2006), "Multidomain topology optimization for structural and material designs", J. Appl. Mech., 73, 565-573. https://doi.org/10.1115/1.2164511.
  21. Mallick, P.K. (2007), Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC Press.
  22. Nikbakt, S., Kamarian, S. and Shakeri, M. (2018), "A review on optimization of composite structures Part I: Laminated composites", Compos. Struct., 195, 158-185. https://doi.org/10.1016/j.compstruct.2018.03.063.
  23. Nishiwaki, S., Frecker, M.I., Min, S. and Kikuchi, N. (1998), "Topology optimization of compliant mechanisms using the homogenization method", Int. J. Numer. Meth. Eng., 42, 535-559. https://doi.org/10.1002/(SICI)1097-0207(19980615)42:3<535::AID-NME372>3.0.CO;2-J.
  24. O zkal, F.M. and Uysal, H. (2010), "u c boyutlu konsol kirislerde topoloji optimizasyonu uygulamalari", Int. J. Eng. Res. Develop., 2(1), 54-57.
  25. Ozturk, F. and Sendeniz, G. (2014), "Yolcu koltuklarinda sac pres ayakta topoloji optimizasyonu calismasi", 7, Otomotiv Teknolojileri Kongresi, Bursa, Turkiye, May.
  26. Reguera, F. and Cortinez, V.H. (2016), "Optimal design of composite thin-walled beams using simulated annealing", Thin Wall. Struct., 104, 71-81. https://doi.org/10.1016/j.tws.2016.03.001.
  27. Setoodeh, S., Abdalla, M.M. and Gurdal, Z. (2005), "Combined topology and fiber path design of composite layers using cellular automata", Struct. Multidisc. Optim., 30, 413-421. https://doi.org/10.1007/s00158-005-0528-y.
  28. Shallan, O., Maaly, H.M., Sagiroglu, M. and Hamdy, O. (2019), "Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Struct. Eng. Mech., 70(2), 221-231. https://doi.org/10.12989/sem.2019.70.2.221.
  29. Smith, H. and Norato, J.A. (2021), "Topology optimization with discrete geometric components made of composite materials", Comput. Meth. Appl. Mech. Eng., 376, 113582. https://doi.org/10.1016/j.cma.2020.113582.
  30. Sorensen, S.N. and Lund, E. (2013), "Topology and thickness optimization of laminated composites including manufacturing constraints", Struct. Multidisc. Optim., 48, 249. https://doi.org/10.1007/s00158-013-0904-y.
  31. Sun, X.F., Yang, J., Xie, Y.M., Huang, X. and Zuo, Z.H. (2011), "Topology optimization of composite structure using bi-directional evolutionary structural optimization method", Procedia Eng., 14, 2980. https://doi.org/10.1016/j.proeng.2011.07.375.
  32. Suziki, K. and Kikuchi, N. (1991), "A homogenization method for shape and topology optimization", Comput. Meth. Appl. Mech. Eng., 93, 291-318. https://doi.org/10.1016/0045-7825(91)90245-2.
  33. Topal, U. and Uzman, u . (2008), "Frequency optimization of laminated composite angle-ply plates with circular hole", Mater. Des., 29(8), 1512-1517. https://doi.org/10.1016/j.matdes.2008.03.002.
  34. Topal, U. and Uzman, u . (2009), "Thermal buckling load optimization of laminated skew plates", Mater. Des., 30(7), 2569-2575. https://doi.org/10.1016/j.matdes.2008.09.025.
  35. Wang, M.Y., Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Eng., 192, 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5.
  36. Yang, R.J. and Chen, C.J. (1996), "Stress-based topology optimization", Struct. Optim., 12, 98-105. https://doi.org/10.1007/BF01196941.
  37. Yang, Z., Fu, K., Zhang, Z., Zhang, J. and Li, Y. (2022), "Topology optimization of 3D-printed continuous fiber-reinforced composites considering manufacturability", Compos. Sci. Technol., 230, 109727. https://doi.org/10.1016/j.compscitech.2022.109727.
  38. Yavuzcan, H.G., O nder, M., Kecel, S., Akkurt, A. and Korkmaz, M.S. (2015), "Yatik agiz acma ve kalibre etme makinasinin yapisal analizi ve agirlik optimizasyonu", Gazi u niversitesi Fen Bilimleri Dergisi Part:C, Tasarim ve Teknoloji, 3(3), 555-564.
  39. Yildiz, A.R. (2012), "Yapay ari koloni algoritmasi ile tasit salincak kolunun optimum boyutlarinin bulunmasi", 3, Ulusal Tasarim Imalat ve Analiz Kongresi, Sakarya, Turkiye, November.
  40. Yildiz, A.R., Kaya, N. and O zturk, F. (2003), "Tasit elemanlarinin optimum topoloji yaklasimi ile tasarimi", Muhendis ve Makina, 44, 516.
  41. Yilmaz, O. and Bekiroglu, S. (2016), "The effect of reinforcing panel zone of bolted end plate column beam connections", J. Facult. Eng. Arch. Gazi Univ., 31(2), 241-253. https://doi.org/10.17341/gummfd.42713.
  42. Zhou, K. and Li, X. (2008), "Topology optimization for minimum compliance under multiple loads based on continuous distribution of members", Struct. Multidisc. Optim., 37, 49-56. https://doi.org/10.1007/s00158-007-0214-3.