참고문헌
- Affdl, J.C.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. http://doi.org/10.1002/pen.760160512.
- Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel. Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Belarbi, M.O., Li, L., Houari, M.S.A., Garg, A., Chalak, H.D., Dimitri, R. and Tornabene, F. (2022), "Nonlocal vibration of functionally graded nanoplates using a layerwise theory", Math. Mech. Solid., 27(12), 2634-2661. http://doi.org/10.1177/10812865221078571.
- Bezzina, S., Bessaim, A., Houari, M.S.A. and Azab, M. (2022), "A new quasi-3D plate theory for free vibration analysis of advanced composite nanoplates", Steel. Compos. Struct., 45(6), 839-850. http://doi.org/10.12989/scs.2022.45.6.839.
- Bouderba, B. and Madjid, B.H. (2022), "Bending analysis of PFGM plates resting on nonuniform elastic foundations and subjected to thermo-mechanical loading", Cogent Eng., 9(1), 2108576. http://doi.org/10.1080/23311916.2022.2108576.
- Chen, S.H. and Cheung, Y.K. (1996), "A modified Lindstedt-Poincare method for a strongly nonlinear system with quadratic and cubic nonlinearities", Shock Vib., 3(4), 279-285. http://doi.org/10.1155/1996/231241.
- Dehkordi, A.A., Goojani, R.J. and Beni, Y.T. (2022), "Porous flexoelectric cylindrical nanoshell based on the non-classical continuum theory", Appl. Phys. A, 128(6), 478. http://doi.org/10.1007/s00339-022-05584-z.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. http://doi.org/10.12989/anr.2020.8.2.115.
- Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23, 97. https://doi.org/10.1007/s43452-023-00634-6.
- Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlin. Dyn., 111(15), 13723-13752. https://doi.org/10.1007/s11071-023-08564-x.
- Ding, H.X., Eltaher, M.A. and She, G.L. (2023), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Eipakchi, H. and Nasrekani, F.M. (2022), "Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness", Steel. Compos. Struct., 43(2), 241-256. https://doi.org/10.12989/scs.2022.43.2.241.
- Eskandary, K., Shishesaz, M. and Moradi, S. (2022), "Buckling analysis of composite conical shells reinforced by agglomerated functionally graded carbon nanotube", Arch. Civil Mech. Eng., 22(3), 132. http://doi.org/10.1007/s43452-022-00440-6.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. http://doi.org/10.1016/j.ijengsci.2018.08.007.
- Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
- Hadji, L., Avcar, M. and Civalek, O. (2021), "An analytical solution for the free vibration of FG nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 43(9), 418. http://doi.org/10.1007/s40430-021-03134-x.
- Hendi, A., Eltaher, M.A, Mohamed, S.A. and Attia, M. (2022). "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel. Compos. Struct., 41(6), 787-802. http://doi.org/10.12989/scs.2021.41.6.787.
- Keleshteri, M.M. and Jelovica, J. (2022a), "Analytical assessment of nonlinear forced vibration of functionally graded porous higher order hinged beams", Compos. Struct., 298, 115994. https://doi.org/10.1016/j.compstruct.2022.115994.
- Keleshteri, M.M. and Jelovica, J. (2022b), "Analytical solution for vibration and buckling of cylindrical sandwich panels with improved FG metal foam core", Eng. Struct., 266, 114580. https://doi.org/10.1016/j.engstruct.2022.114580.
- Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Panah, S.R.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. http://doi.org/10.12989/anr2020.9.4.237.
- Kumar, S. and Jana, P. (2019), "Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates", Int. J. Mech. Sci., 163, 105105. https://doi.org/10.1016/j.ijmecsci.2019.105105.
- Kumar, S. and Jana, P. (2022), "Accurate solution for free vibration behaviour of stepped FGM plates implementing the dynamic stiffness method", Struct., 45, 1971-1989. https://doi.org/10.1016/j.istruc.2022.10.035.
- Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. https://doi.org/10.1016/j.compstruct.2018.04.085.
- Kumar, Y. and Gupta, A. (2022), "Size-dependent stochastic vibration response of compositionally graded nanoplates with system randomness using nonlocal continuum model with partial support", Arch. Appl. Mech., 92(3), 1053-1081. http://doi.org/10.1007/s00419-021-02092-z.
- Li, Q.X., Xie, B.H., Sahmani, S. and Safaei, B. (2020), "Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction", J. Brazil. Soc. Mech. Sci. Eng., 42, 1-18. http://doi.org/10.1007/s40430-020-02317-2.
- Li, Q.Y., Wu, D., Chen, X.J., Liu, L., Yu, Y.G. and Gao, W. (2018), "Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation", Int. J. Mech. Sci., 148, 596-610. http://doi.org/10.1016/j.ijmecsci.2018.09.020.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel. Compos. Struct., 46(5), 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428
- Lu, L., Zhu, L., Guo, X.M., Zhao, J.Z. and Liu, G.Z. (2019), "A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells", Appl. Math. Mech., 40(12), 1695-1722. http://doi.org/10.1007/s10483-019-2549-7.
- Madjid, B.H. and Bouderba, B. (2022), "Buckling analysis of FGM plate exposed to different loads conditions", Mech. Bas. Des. Struct. Mach., 92, 104485. http://doi.org/10.1080/15397734.2022.2068576.
- Mehralian, F. and Beni, Y.T. (2017), "Thermo-electro-mechanical buckling analysis of cylindrical nanoshell on the basis of modified couple stress theory", J. Mech. Sci. Technol., 31, 1773-1787. http://doi.org/10.1007/s12206-017-0325-8.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. http://doi.org/10.12989/anr.2020.8.2.149.
- Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019), "An isogeometric approach of static and free vibration analyses for porous FG nanoplates", Eur. J. Mech.-A/Solid., 78, 103851. http://doi.org/10.1016/j.euromechsol.2019.103851.
- Rabczuk, T. (2020), "Forced vibration analysis of functionally graded anisotropic nanoplates resting on Winkler/Pasternak-foundation", Comput. Mater. Continua, 62(2), 607-629. http://doi.org/10.32604/cmc.2020.08032.
- Rai, S., Kumar, S., Singh, R. and Gupta, A. (2023), "Effect of porosity inclusions on the natural frequencies of the FGM plates using dynamic stiffness method", Int. J. Interact. Des. Manuf., 17, 2723-2730. https://doi.org/10.1007/s12008-022-01170-y.
- Salari, E. and Vanini, S.A.S. (2022), "Nonlocal nonlinear static/dynamic snap-through buckling and vibration of thermally post-buckled imperfect functionally graded circular nanoplates", Wave. Random Complex Media, 1-47. http://doi.org/10.1080/17455030.2022.2055810.
- Salehipour, H., Shahsavar, A. and Civalek, O. (2019), "Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges", Compos. Struct., 221, 110842. http://doi.org/10.1016/j.compstruct.2019.04.014.
- Shakouri, P., Ghazavi, M.R., Shahgholi, M. and Mohamadi, A. (2022), "Linear dynamic analysis of axially moving cylindrical nanoshells considering surface energy effect with constant velocity", Acta Mechanica, 233(10), 4231-4246. http://doi.org/10.1007/s00707-022-03310-7.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Van Tuyen, B. (2022), "Free vibration behaviors of nanoplates resting on viscoelastic medium", Arab. J. Sci. Eng., 1-14. http://doi.org/10.1007/s13369-022-07500-2.
- Vinh, P.V. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. http://doi.org/10.1016/j.tws.2022.109084.
- Vinh, P.V., Tounsi, A. and Belarbi, M.O. (2023), "On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters", Eng. Comput., 39, 835-855. https://doi.org/10.1007/s00366-022-01687-6.
- Wei, H. and Mohammadi, R. (2021), "Hygro-thermo-mechanical bending and vibration analysis of the CNTRC doubly curved nanoshells with thickness stretching based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 136, 1-23. http://doi.org/10.1140/epjp/s13360-021-01337-8.
- Wu, F. and She, G.L. (2023), "Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495.
- Xiao, J. and Wang, J. (2022), "Nonlinear vibration of FGM sandwich nanoplates with surface effects", Acta Mechanica Solida Sinica, 36(2), 274-281. http://dx.doi.org/10.1007/s10338-022-00371-y.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Xu, J.Q. and She, G.L. (2023a), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
- Xu, J.Q. and She, G.L. (2023b), "The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection", Geomech. Eng., 35(1), 81-93. https://doi.org/10.12989/gae.2023.35.1.081.
- Xu, J.Q., She, G.L., Li, Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection", Steel. Compos. Struct., 47(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
- Yang, Y., Hu, Z.L. and Li, X.F. (2021), "Axisymmetric bending and vibration of circular nanoplates with surface stresses", Thin Wall. Struct., 166, 108086. http://doi.org/10.1016/j.tws.2021.108086.
- Zeighampour, H. and Shojaeian, M. (2017), "Size-dependent vibration of sandwich cylindrical nanoshells with functionally graded material based on the couple stress theory", J. Brazil. Soc. Mech. Sci. Eng., 39(7), 2789-2800. http://doi.org/10.1007/s40430-017-0770-4.
- Zhang, Y.F. and Zhang, F. (2019), "Vibration and buckling of shear deformable functionally graded nanoporous metal foam nanoshells", Nanomater., 9(2), 271. http://doi.org/10.3390/nano9020271.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2023.2180556.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel. Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., Ding, H.X., She, G.L. and Tounsi, A. (2023d), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W., She, G.L. and Eltaher, M.A. (2023d), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aerosp. Sci. Technol., 108693. https://doi.org/10.1016/j.ast.2023.108693.
- Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel. Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465.