DOI QR코드

DOI QR Code

The Effect of Radar Data Assimilation in Numerical Models on Precipitation Forecasting

수치모델에서 레이더 자료동화가 강수 예측에 미치는 영향

  • Ji-Won Lee (Dept. of Atmospheric Sciences, Kyungpook National University) ;
  • Ki-Hong Min (Dept. of Atmospheric Sciences, Kyungpook National University)
  • 이지원 (경북대학교 대학원 대기과학과) ;
  • 민기홍 (경북대학교 대학원 대기과학과)
  • Received : 2023.07.16
  • Accepted : 2023.10.05
  • Published : 2023.11.30

Abstract

Accurately predicting localized heavy rainfall is challenging without high-resolution mesoscale cloud information in the numerical model's initial field, as precipitation intensity and amount vary significantly across regions. In the Korean Peninsula, the radar observation network covers the entire country, providing high-resolution data on hydrometeors which is suitable for data assimilation (DA). During the pre-processing stage, radar reflectivity is classified into hydrometeors (e.g., rain, snow, graupel) using the background temperature field. The mixing ratio of each hydrometeor is converted and inputted into a numerical model. Moreover, assimilating saturated water vapor mixing ratio and decomposing radar radial velocity into a three-dimensional wind vector improves the atmospheric dynamic field. This study presents radar DA experiments using a numerical prediction model to enhance the wind, water vapor, and hydrometeor mixing ratio information. The impact of radar DA on precipitation prediction is analyzed separately for each radar component. Assimilating radial velocity improves the dynamic field, while assimilating hydrometeor mixing ratio reduces the spin-up period in cloud microphysical processes, simulating initial precipitation growth. Assimilating water vapor mixing ratio further captures a moist atmospheric environment, maintaining continuous growth of hydrometeors, resulting in concentrated heavy rainfall. Overall, the radar DA experiment showed a 32.78% improvement in precipitation forecast accuracy compared to experiments without DA across four cases. Further research in related fields is necessary to improve predictions of mesoscale heavy rainfall in South Korea, mitigating its impact on human life and property.

Keywords

Acknowledgement

이 논문은 2020학년도 경북대학교 국립대학육성사업 지원비에 의하여 연구되었습니다.

References

  1. Abhilash, S., A. K. Sahai, K. Mohankumar, J. P. George, and S. Das, 2012: Assimilation of Doppler weather radar radial velocity and reflectivity observations in WRF-3DVAR system for short-range forecasting of convective storms. Pure Appl. Geophys., 169, 2047-2070, doi:10.1007/s00024-012-0462-z.
  2. Albers S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The local analysis and prediction system (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273-287, doi:10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.
  3. Bae, J.-H., and K.-H. Min, 2022: Forecast characteristics of radar data assimilation based on the scales of precipitation systems. Remote Sens, 14, 605, doi:10.3390/rs14030605.
  4. Do, P.-N., K.-S. Chung, P.-L. Lin, C.-Y. Ke, and S. M. Ellis, 2022: Assimilating retrieved water vapor and radar data from NCAR S-PolKa: Performance and validation using real cases. Mon. Wea. Rev., 150, 1177-1199, doi:10.1175/MWR-D-21-0292.1.
  5. Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272-294, doi:10.1175/2010MWR3438.1.
  6. Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 1054-1065, doi:10.1175/JAS-D-11-0162.1.
  7. Gao, J., C. Fu, D. J. Stensrud, and J. S. Kain, 2016: OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci., 73, 2403-2426, doi:10.1175/JAS-D-15-0311.1.
  8. Gilmore, M. S., and L. J. Wicker, 1998: The influence of mid-tropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943-958, doi:10.1175/1520-0493(1998)126<0943:TIOMDO>2.0.CO;2.
  9. Hastuti, M. I., K.-H. Min, and J.-W. Lee, 2023: Improving radar data assimilation forecast using advanced remote sensing data. Remote Sens, 15, 2760, doi:10.3390/rs15112760.
  10. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
  11. Hu, M., M. Xue, J. Gao, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the fort worth, texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699-721, doi:10.1175/MWR3093.1.
  12. Jimenez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898-918, doi:10.1175/MWR-D-11-00056.1.
  13. Johnson, M., Y. Jung, D. Dawson, T. Supinie, M. Xue, J. Park, and Y.-H. Lee, 2018: Evaluation of unified model microphysics in high-resolution NWP simulations using polarimetric radar observations. Adv. Atmos. Sci., 35, 771-784, doi:10.1007/s00376-017-7177-0.
  14. Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228-2245. https://doi.org/10.1175/2007MWR2083.1
  15. Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246-2260, doi:10.1175/2007MWR2288.1.
  16. KMA, 2021: Abnormal Climate Report 2020 Korea Meteorological Administration, 212 pp (in Korean).
  17. Lahoz, B. K. W., and R. Menard, 2010: Data assimilation. Springer-Verlag Berlin Heidelberg. 718 pp.
  18. Law, K., A. Stuart, and L. Zygalakis, 2015: Data assimilation. Cham, Switzerland, Springer, 242 pp.
  19. Lee, J.-W., K.-H. Min, Y.-H. Lee, and G. Lee, 2020: X-Net-Based radar data assimilation study over the Seoul metropolitan area. Remote Sens., 12, 893, doi:10.3390/rs12050893.
  20. Lee, J.-W., K.-H. Min, and K.-S. S. Lim, 2022: Comparing 3DVAR and hybrid radar data assimilation methods for heavy rain forecast. Atmos. Res., 270, 106062 doi:10.1016/j.atmosres.2022.106062.
  21. Lee, Y.-H., and K.-H. Min, 2019: High-resolution modeling study of an isolated convective storm over Seoul Metropolitan area. Meteor. Atmos. Phys., 131, 1549-1564, doi:10.1007/s00703-019-0657-2.
  22. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.
  23. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 1065-1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
  24. Liu, C., H. Li, M. Xue, Y. Jung, J. Park, L. Chen, R., Kong, and C.-C. Tong, 2022: Use of a reflectivity operator based on double-moment Thompson microphysics for direct assimilation of radar reflectivity in GSI-based hybrid En3DVar. Mon. Wea. Rev., 150, 907-926, doi:10.1175/MWR-D-21-0040.1.
  25. Min, K.-H., S. Choo, D. Lee, and G. Lee, 2015: Evaluation of WRF cloud microphysics schemes using radar observations. Wea. Forecasting, 30, 1571-1589, doi:10.1175/WAF-D-14-00095.1.
  26. Parrish, D. F., and J. C. Derber, 1992: The National Meteoro-logical Center's spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.
  27. Skamarock, W. C., and Coauthors, 2019: A description of the advanced research WRF model version 4.1, Tech. Rep, 145 pp.
  28. Smith, Jr. P. L., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation processes. J. Appl. Meteor. Climatol., 14, 1156-1165, doi:10.1175/1520-0450(1975)014<1156:RRFCIN>2.0.CO;2.
  29. Souto, M. J., C. F. Balseiro, V. Perez-Munuzuri, M. Xue, and K. Brewster, 2003: Impact of cloud analysis on numerical weather prediction in the galician region of spain. J. Appl. Meteor. Climatol., 42, 129-140, doi:10.1175/1520-0450(2003)042<0129:IOCAON>2.0.CO;2.
  30. Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Wea. Rev., 137, 4011-4029, doi:10.1175/2009MWR2839.1.
  31. Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments, J. Atmos. Sci., 54, 1642-1661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.
  32. Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. great plains. Mon. Wea. Rev., 141, 2245-2264, doi:10.1175/MWR-D-12-00169.1.
  33. Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land-surface model in the WRF Model. Amer. Meteor. Soc., 14 pp.
  34. Tsai, C.-C., and K.-S. Chung, 2020: Sensitivities of quantitative precipitation forecasts for Typhoon Soudelor (2015) near landfall to polarimetric radar data assimilation. Remote Sens., 12, 3711, doi:10.3390/rs12223711.
  35. Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889-902, doi:10.1175/JAMC-D-12-0120.1.
  36. Xiao Q., Y.-H. Kuo, J. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 14-22, doi:10.1175/JAM2439.1.
  37. Xiao Q., and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3381-3404, doi:10.1175/MWR3471.1.
  38. Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain-Fritsch scheme. Mon. Wea. Rev., 144, 833-860, doi:10.1175/MWR-D-15-0005.1.