과제정보
The author would like to express his sincere thanks to the referee for valuable suggestions towards the improvement of this paper.
참고문헌
- N. S. Agashe and M. R. Chafle, A semi-symmetric nonmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399-409.
- S. K. Chaubey, On semi-symmetric non-metric connection, Prog. of Math. 41-42 (2007), 11-20.
- S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric and quarter symmetric metric connections, Tensor (N.S.) 70 (2008), no. 2, 202-213.
- U. C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), no. 3-4, 377-381. https://doi.org/10.5486/pmd.1999.1999
- L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton, NJ, 1949.
- J. P. Jaiswal and R. H. Ojha, Some properties of K-contact Riemannian manifolds admitting a semi-symmetric non-metric connection, Filomat 24 (2010), no. 4, 9-16. https://doi.org/10.2298/FIL1004009J
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1963.
- J. Sengupta, U. C. De, and T. Q. Binh, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31 (2000), no. 12, 1659-1670.
- Z. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ).R = 0. I. The local version, J. Differential Geometry 17 (1982), no. 4, 531-582 (1983). http://projecteuclid.org/euclid.jdg/1214437486
- Z. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ).R = 0. II. Global versions, Geom. Dedicata 19 (1985), no. 1, 65-108. https://doi.org/10.1007/BF00233102
- L. Tamassy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, in Differential geometry and its applications (Eger, 1989), 663-670, Colloq. Math. Soc. Janos Bolyai, 56, North-Holland, Amsterdam, 1992.
- M. M. Tripathi, A new connection in a Riemannian manifold, Int. Electron. J. Geom. 1 (2008), no. 1, 15-24.
- K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
- D. Zhao, T. Y. Ho, and A. J. Hyon, Geometries for a mutual connection of semi-symmetric metric recurrent connections, Filomat 34 (2020), no. 13, 4367-4374. https://doi.org/10.2298/FIL2013367Z