참고문헌
- O. P. Ahuja, The Bieberbach conjecture and its impact on the developments in geometric function theory, Math. Chronicle 15 (1986), 1-28.
- O. P. Ahuja, S. Anand, and N. K. Jain, Bohr radius problems for some classes of analytic functions using quantum calculus approach, Mathematics 8 (2020), 623. https://doi.org/10.3390/math8040623
- O. P. Ahuja and A. Cetinkaya, Use of quantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conf. Proc. 2019, 2095, 020001-1-020001-14.
- O. P. Ahuja, A. Cetinkaya, and N. K. Jain, Mittag-Leffler operator connected with certain subclasses of Bazilevic functions, J. Math. 2022 (2022), Art. ID 2065034, 7 pp. https://doi.org/10.1155/2022/2065034
- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12-22. https://doi.org/10.2307/2007212
- R. M. Ali and V. Singh, Coefficients of parabolic starlike functions of order ρ, in Computational methods and function theory 1994 (Penang), 23-36, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.
- F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 339 (2008), no. 1, 655-667. https://doi.org/10.1016/j.jmaa.2007.05.087
- S. Anand, N. K. Jain, and S. Kumar, Sharp Bohr radius constants for certain analytic functions, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 3, 1771-1785. https://doi.org/10.1007/s40840-020-01071-x
- S. Anand, N. K. Jain, and S. Kumar, Normalized analytic functions with fixed second coefficient, J. Anal., to appear.
- S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.2307/1995025
- R. Bharati, R. Parvatham, and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17-32. https://doi.org/10.5556/j.tkjm.28.1997.4330
- G. Gasper and M. Rahman, Basic hypergeometric series, second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge Univ. Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511526251
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92. https://doi.org/10.4064/ap-56-1-87-92
- F. H. Jackson, A generalization of the functions Γ(n) and xn, Proc. Royal Soc. London 74 (1904), 64-72. https://doi.org/10.1098/rspl.1904.0082
- F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh 46 (1908), no. 2, 253-281. https://doi.org/10.1017/S0080456800002751
- F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
- I. B. Jung, Y. C. Kim, and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), no. 1, 138-147. https://doi.org/10.1006/jmaa.1993.1204
- V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
- S. R. Kanas and A. Wisniowska-Wajnryb, Conic regions and k-uniform convexity. II, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 22 (1998), 65-78.
- S. R. Kanas and A. Wisniowska-Wajnryb, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7
- S. R. Kanas and A. Wisniowska-Wajnryb, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 647-657 (2001).
- R. J. Libera and E. J. Z lotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/10.2307/2043698
- W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157- 169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
- S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, and S. N. Malik, Geometric properties of certain classes of analytic functions associated with q-integral operators, Symmetry 11 (2019), 719.
- K. I. Noor, S. Riaz, and M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math. 8 (2017), no. 1, 3-11. https://doi.org/10.18576/amis/110523
- S. Rana, O. Ahuja, and N. K. Jain, Radii Constants for Functions with Fixed Second Coefficient, Mathematics 10 (2022), no. 23, 4428. https://doi.org/10.3390/math10234428
- W. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82. https://doi.org/10.1112/plms/s2-48.1.48
- F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122 (1992).
- F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. https://doi.org/10.2307/2160026
- Z. Shareef, S. Hussain, and M. Darus, Convolution operators in the geometric function theory, J. Inequal. Appl. 2012 (2012), 213, 11 pp. https://doi.org/10.1186/1029-242X-2012-213