DOI QR코드

DOI QR Code

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja (Department of Mathematical Sciences Kent State University) ;
  • Asena Cetinkaya (Department of Mathematics and Computer Sciences Istanbul Kultur University) ;
  • Naveen Kumar Jain (Department of Mathematics Aryabhatta College)
  • 투고 : 2023.01.03
  • 심사 : 2023.04.26
  • 발행 : 2023.10.31

초록

In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

키워드

참고문헌

  1. O. P. Ahuja, The Bieberbach conjecture and its impact on the developments in geometric function theory, Math. Chronicle 15 (1986), 1-28. 
  2. O. P. Ahuja, S. Anand, and N. K. Jain, Bohr radius problems for some classes of analytic functions using quantum calculus approach, Mathematics 8 (2020), 623. https://doi.org/10.3390/math8040623 
  3. O. P. Ahuja and A. Cetinkaya, Use of quantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conf. Proc. 2019, 2095, 020001-1-020001-14. 
  4. O. P. Ahuja, A. Cetinkaya, and N. K. Jain, Mittag-Leffler operator connected with certain subclasses of Bazilevic functions, J. Math. 2022 (2022), Art. ID 2065034, 7 pp. https://doi.org/10.1155/2022/2065034 
  5. J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12-22. https://doi.org/10.2307/2007212 
  6. R. M. Ali and V. Singh, Coefficients of parabolic starlike functions of order ρ, in Computational methods and function theory 1994 (Penang), 23-36, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995. 
  7. F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 339 (2008), no. 1, 655-667. https://doi.org/10.1016/j.jmaa.2007.05.087 
  8. S. Anand, N. K. Jain, and S. Kumar, Sharp Bohr radius constants for certain analytic functions, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 3, 1771-1785. https://doi.org/10.1007/s40840-020-01071-x 
  9. S. Anand, N. K. Jain, and S. Kumar, Normalized analytic functions with fixed second coefficient, J. Anal., to appear. 
  10. S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.2307/1995025 
  11. R. Bharati, R. Parvatham, and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17-32.  https://doi.org/10.5556/j.tkjm.28.1997.4330
  12. G. Gasper and M. Rahman, Basic hypergeometric series, second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge Univ. Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511526251 
  13. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92. https://doi.org/10.4064/ap-56-1-87-92 
  14. F. H. Jackson, A generalization of the functions Γ(n) and xn, Proc. Royal Soc. London 74 (1904), 64-72.  https://doi.org/10.1098/rspl.1904.0082
  15. F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh 46 (1908), no. 2, 253-281.  https://doi.org/10.1017/S0080456800002751
  16. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203. 
  17. I. B. Jung, Y. C. Kim, and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), no. 1, 138-147. https://doi.org/10.1006/jmaa.1993.1204 
  18. V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7 
  19. S. R. Kanas and A. Wisniowska-Wajnryb, Conic regions and k-uniform convexity. II, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 22 (1998), 65-78. 
  20. S. R. Kanas and A. Wisniowska-Wajnryb, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7 
  21. S. R. Kanas and A. Wisniowska-Wajnryb, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 647-657 (2001). 
  22. R. J. Libera and E. J. Z lotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/10.2307/2043698 
  23. W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157- 169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994. 
  24. S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, and S. N. Malik, Geometric properties of certain classes of analytic functions associated with q-integral operators, Symmetry 11 (2019), 719. 
  25. K. I. Noor, S. Riaz, and M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math. 8 (2017), no. 1, 3-11.  https://doi.org/10.18576/amis/110523
  26. S. Rana, O. Ahuja, and N. K. Jain, Radii Constants for Functions with Fixed Second Coefficient, Mathematics 10 (2022), no. 23, 4428. https://doi.org/10.3390/math10234428 
  27. W. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82. https://doi.org/10.1112/plms/s2-48.1.48 
  28. F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122 (1992). 
  29. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. https://doi.org/10.2307/2160026 
  30. Z. Shareef, S. Hussain, and M. Darus, Convolution operators in the geometric function theory, J. Inequal. Appl. 2012 (2012), 213, 11 pp. https://doi.org/10.1186/1029-242X-2012-213