DOI QR코드

DOI QR Code

Testing and evaluation of the corrosion behavior of Aluminum/Alumina bulk composites fabricated via combined stir casting and APB process

  • Abdalkareem Jasim (Al-maarif University College, Medical Laboratory Techniques Department) ;
  • Ghassan Fadhil Smaisim (Department of Mechanical Engineering, Faculty of Engineering, University of Kufa) ;
  • Abduladheem Turki Jalil (Faculty of Biology and Ecology, Yanka Kupala State University of Grodno) ;
  • Surendar Aravindhan (Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences) ;
  • Abdullah Hasan Jabbar (Optical Department, College of Medical and Health Technology, Sawa University, Ministry of Higher Education and Scientific Research) ;
  • Shaymaa Abed Hussein (Al-Manara College for Medical Sciences) ;
  • Muneam Hussein Ali (Al-Nisour University College) ;
  • Muataz S. Alhassan (Division of Advanced Nano Material Technologies, Scientific Research Center, Al-Ayen University) ;
  • Yasser Fakri Mustafa (Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul)
  • 투고 : 2022.01.22
  • 심사 : 2022.08.18
  • 발행 : 2023.12.25

초록

In this study, AA1060/Alumina composites were fabricated by combined stir casting and accumulative press bonding (APB). The APB process was repeated up to six press bonding steps at 300Ċ. As the novelty, potential dynamic polarization in 3.5Wt% NaCl solution was used to study the corrosion properties of these composites. The corrosion behavior of these samples was compared and studied with that of the annealed aluminum alloy 1060 and versus the number of APB steps. So, as a result of enhancing influence on the number of APB process, this experimental investigation showed a significant enhancement in the main electrochemical parameters and the inert character of the Alumina particles. Together with Reducing the active zones of the material surfaces could delay the corrosion process. Also, at higher number of steps, the corrosion resistance of composites improved. The sample produced after six number of steps had a low corrosion density in comparison with high corrosion density of annealed specimens. Also, the scanning electron microscopy (SEM), was used to study the corrosion surface of samples.

키워드

참고문헌

  1. Amirkhanlou, S., Ketabchi, M., Parvin, N., Khorsand, S. and Carreno, F. (2014), "Manufacturing of nanostructured Al/WCp metal- matrix composites by accumulative press bonding", IOP Conf. Ser.: Mater. Sci. Eng., 63(1), 012001. https://doi.org/10.1088/1757-899X/63/1/012001.
  2. Bakhtadze, V., Mosidze, V., Machaladze, T., Kharabadze, N., Lochoshvili, D., Pajishvili, M. and Mdivani, N. (2020), "Activity of Pd-MnOx/Cordierite (Mg, Fe) 2Al4Si5O18) catalyst for carbon monoxide oxidation", Eur. Chem. Bull., 9(2), 75-77. https://doi.org/10.17628/ecb.2020.9.75-77
  3. Chen, H., Dmitry, B., Supat, C., Maboud, H., Mahmoud, M.Z., Sabetvand, R., Duan, J. and Toghraie, D. (2021), "Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation", Case Stud. Therm. Eng., 28, 101628. https://doi.org/10.1016/j.csite.2021.101628.
  4. Chen, Y.J., Wang, Q., Roven, H.J., Liu, M.P., Karlsen, M., Yu, Y.D. and Hjelen, J. (2008), "Network-shaped fine- grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression", Scripta Mater., 58(4), 311-314. https://doi.org/10.1016/j.scriptamat.2007.09.058.
  5. Darmiani, E., Danaee, I., Golozar, M.A. and Toroghinejad, M.R. (2013), "Corrosion investigation of Al-SiC Nano-composite fabricated by accumulative roll bonding (APB) process", J. Alloy. Compound., 552, 31-39. https://doi.org/10.1016/j.jallcom.2012.10.069.
  6. Farhadipour, P., Sedighi, M. and Heydari Vini, M. (2018), "Influence of temperature of accumulative roll bonding on the mechanical properties of AA5083/1% Al2O3 composite", Powder Metallurg. Metal Ceram., 56(9-10), 496-503. https://doi.org/10.1007/s11106-018-9921-0.
  7. Gao, Y., Vini, M.H. and Daneshmand, S. (2022), "Effect of nano Al2O3 particles on the mechanical and wear properties of Al/Al2O3 composites manufactured via ARB", Rev. Adv. Mater. Sci., 61(1), 734-743. https://doi.org/10.1515/rams-2022-0268.
  8. Heydari Vini, M. and Daneshmand S. (2020), "Fabrication of bimetal aluminum-5% alumina-bromine composites by warm accumulative roll bonding", J. Test. Eval., 49(4), 2757-2766. https://doi.org/10.1520/JTE20190863
  9. Heydari Vini, M. and Sedighi, M. (2017)., "Mechanical properties and bond strength of bimetallic AA1050/AA5083 laminates fabricated by warm-accumulative roll bonding", Can. Metal. Quart., 45, 160-167. https://doi.org/10.1080/00084433.2017.1405539.
  10. Heydari Vini, M., Sedighi, M. and Mondali, M. (2017), "Investigation of bonding behavior of AA1050/AA5083 bimetallic laminates by roll bonding technique", Trans. Ind. Inst. Metal., 71(9), 2089-2094. https://doi.org/10.1007/s12666-017-1058-1.
  11. Kianfar, F. and Kianfar, E. (2019), "Synthesis of isophthalic Acid/aluminum nitrate thin film nanocomposite membrane for hard water softening", J. Inorg. Organomet. Polym., 29, 2176-2185. https://doi.org/10.1007/s10904-019-01177-1.
  12. Korchef, A. and Kahoul, A. (2013), "Corrosion behavior of commercial aluminum alloy processed by equal channel angular pressing", J. Corros., 2013, Article ID 983261. https://doi.org/10.1155/2013/983261.
  13. Lee, S.M. and Kang, C. (2011), "Effect of solid fraction on formability and mechanical properties in a vertical-type rheo squeeze-casting process", Proc. Inst. Mech. Eng. Part B, J. Eng. Manuf., 225(B2), 184-196. https://doi.org/10.1243/09544054JEM1874.
  14. Mikhailov, O.V. and Chachkov, D.V. (2020), "Molecular structure models of Al2Ti3 and Al2V3 clusters according to DFT quantum-chemical calculations", Eur. Chem. Bull., 9(2), 62-68. https://doi.org/10.17628/ecb.2020.9.62-68
  15. Reihanian, M., Lari Baghal, S.M., Keshavarz Haddadian, F. and Paydar, M.H. (2016). "A comparative corrosion study of Al/Al2O3-SiC hybrid composite fabricated by Accumulative Roll Bonding (ARB)", J. Ultraf. Grain. Nanostr. Mater., 49(1), 29-35. https://doi.org/10.7508/jufgnsm.2016.01.05.
  16. Seah, K.H.W., Hemanth, J. and Sharma, S.C. (2003), "Effect of high-rate heat transfer during casting on the strength, hardness and wear behavior of aluminum-quartz particulate metal matrix composites", Proc. Inst. Mech. Eng. Part B, J. Eng. Manuf., 217(5), 651-659. https://doi.org/10.1243/095440503322011371
  17. Sedighi, M., Vini, M.H. and Farhadipour, P. (2016), "Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding", Powder Metallurg. Metal Ceram., 55(7), 413-418. https://doi.org/10.1007/s11106-016-9821-0.
  18. Sereshki, M., Azad, B. and Borhani, E. (2016), "Corrosion behavior of Al-2wt%Cu alloy processed by Accumulative Roll Bonding (APB) process", J. Ultraf. Grain. Nanostr. Mater., 49(1), 22-28. https://doi.org/10.7508/jufgnsm.2016.01.04.
  19. Supat, C., Olegovich Bokov, D., Suksatan, W., Landowski, M., Fydrych, D., Abdullah, M.E. and Aghajani Derazkola, H. (2021), "Pin angle thermal effects on friction stir welding of AA5058 aluminum alloy: CFD simulation and experimental validation", Mater., 14(24), 7565. https://doi.org/10.3390/ma14247565.
  20. Tjahjono, T., Elveny, M., Chupradit, S., Bokov, D., Hoi, H.T. and Pandey, M. (2021), "Role of cryogenic cycling rejuvenation on flow behavior of ZrCuAlNiAg metallic glass at relaxation temperature", Trans. Ind. Inst. Metal., 74(12), 3241-3247. https://doi.org/10.1007/s12666-021-02395-3.
  21. Vini, M.H. and Daneshmand, S. (2020), "Corrosion of Al/TiO2 composites fabricated by accumulative roll bonding", Mater. Perform., 59(11), 28-31.
  22. Vini, M.H. and Daneshmand, S. (2019), "Bonding evolution of bimetallic Al/Cu laminates fabricated by asymmetric roll bonding", Adv. Mater. Res., 8(1), 1-10. https://doi.org/10.12989/amr.2019.8.1.001.
  23. Vini, M.H. and Daneshmand, S. (2019), "Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques", Adv. Comput. Des., 4(1), 33-41. https://doi.org/10.12989/acd.2019.4.1.033.
  24. Vini, M.H. and Daneshmand, S. (2022), "Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process", Adv. Comput. Des., 7(2), 129-137. https://doi.org/10.12989/acd.2022.7.2.129.
  25. Wang, W., Vini, M.H. and Daneshmand, S. (2022), "Mechanical and wear properties of Al/tic composites fabricated via combined compo-casting and APB process", Crystal., 12(10), 1440. https://doi.org/10.3390/cryst12101440.