DOI QR코드

DOI QR Code

Machine learning techniques for reinforced concrete's tensile strength assessment under different wetting and drying cycles

  • Ibrahim Albaijan (Mechanical Engineering Department, College of Engineering at Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Danial Fakhri (Department of Applied Sciences, Universite du Quebec a Chicoutimi) ;
  • Adil Hussein Mohammed (Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil) ;
  • Arsalan Mahmoodzadeh (IRO, Civil Engineering Department, University of Halabja) ;
  • Hawkar Hashim Ibrahim (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil) ;
  • Khaled Mohamed Elhadi (Civil Engineering Department, College of Engineering, King Khalid University) ;
  • Shima Rashidi (Department of Computer Science, College of Science and Technology, University of Human Development)
  • Received : 2022.12.15
  • Accepted : 2023.10.31
  • Published : 2023.11.10

Abstract

Successive wetting and drying cycles of concrete due to weather changes can endanger the safety of engineering structures over time. Considering wetting and drying cycles in concrete tests can lead to a more correct and reliable design of engineering structures. This study aims to provide a model that can be used to estimate the resistance properties of concrete under different wetting and drying cycles. Complex sample preparation methods, the necessity for highly accurate and sensitive instruments, early sample failure, and brittle samples all contribute to the difficulty of measuring the strength of concrete in the laboratory. To address these problems, in this study, the potential ability of six machine learning techniques, including ANN, SVM, RF, KNN, XGBoost, and NB, to predict the concrete's tensile strength was investigated by applying 240 datasets obtained using the Brazilian test (80% for training and 20% for test). In conducting the test, the effect of additives such as glass and polypropylene, as well as the effect of wetting and drying cycles on the tensile strength of concrete, was investigated. Finally, the statistical analysis results revealed that the XGBoost model was the most robust one with R2 = 0.9155, mean absolute error (MAE) = 0.1080 Mpa, and variance accounted for (VAF) = 91.54% to predict the concrete tensile strength. This work's significance is that it allows civil engineers to accurately estimate the tensile strength of different types of concrete. In this way, the high time and cost required for the laboratory tests can be eliminated.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large research group under grant number RGP 2/365/44.

References

  1. Bai, X., Zhang, Z., Shi, H., Luo, Z. and Li, T. (2023). "Identification of subsurface mesoscale crack in full ceramic ball bearings based on strain energy theory", Appl. Sci., 13(13), 7783. https://doi.org/10.3390/app13137783.
  2. Beskopylny, A.N., Stel'makh, S.A., Shcherban, E.M., Mailyan, L. R., Meskhi, B., Razveeva, I., Chernil'nik, A. and Beskopylny, N. (2022), "Concrete strength prediction using machine learning methods CatBoost, k-Nearest neighbors, support vector regression", Appl. Sci., 12(21), 10864. https://doi.org/10.3390/app122110864.
  3. Cao, J., He, H., Zhang, Y., Zhao, W., Yan, Z. and Zhu, H. (2023), "Crack detection in ultrahigh-performance concrete using robust principal component analysis and characteristic evaluation in the frequency domain", Struct. Health Monit., https://doi.org/10.1177/14759217231178457.
  4. Chanal, D., Yousfi Steiner, N., Petrone, R., Chamagne, D. and Pera, M.-C. (2022), "Online diagnosis of PEM fuel cell by fuzzy C-means clustering", Encyclopedia Energy Storage, 359-393. https://doi.org/10.1016/B978-0-12-819723-3.00099-8.
  5. Chen, L., Chen, Z., Xie, Z., Wei, L., Hua, J., Huang, L. and Yap, P.-S. (2023), "Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities", Develop. Built Environ., 16, 100255. https://doi.org/10.1016/j.dibe.2023.100255.
  6. Chen, T. and Guestrin, C. (2016), "XGBoost", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785.
  7. Choi, Y. and Yuan, R.L. (2005), "Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC", Cement Concrete Res., 35(8), 1587-1591. https://doi.org/10.1016/j.cemconres.2004.09.010.
  8. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018.
  9. Durgun, M.Y. (2020), "Effect of wetting-drying cycles on gypsum plasters containing ground basaltic pumice and polypropylene fibers", J. Build. Eng., 32, 101801. https://doi.org/10.1016/j.jobe.2020.101801.
  10. He, H.E.S., Wen, T., Yao, J., Wang, X., He, C. and Yu, Y. (2023), "Employing novel N-doped graphene quantum dots to improve chloride binding of cement", Construct. Build. Mater., 401, 132944. https://doi.org/10.1016/j.conbuildmat.2023.132944.
  11. Hilles, M.M. and Ziara, M.M. (2019), "Mechanical behavior of high strength concrete reinforced with glass fiber", Eng. Sci. Technol. Int. J., 22(3), 920-928. https://doi.org/10.1016/j.jestch.2019.01.003.
  12. Ho, T. (1998), "The random subspace method for constructing decision forests", IEEE Transact. Pattern Anal. Machine Intelligence, 20(8), 832-844. https://doi.org/10.1109/34.709601.
  13. Huang, H., Li, M., Zhang, W. and Yuan, Y. (2022), "Seismic behavior of a friction-type artificial plastic hinge for the precast beam-column connection", Archiv. Civil Mech. Eng., 22(4), 201. https://doi.org/10.1007/s43452-022-00526-1.
  14. Huang, H., Yuan, Y., Zhang, W. and Li, M. (2021a), "Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint", Eng. Struct., 245, 112848. https://doi.org/10.1016/j.engstruct.2021.112848.
  15. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021b), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concrete Struct. Mater., 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7.
  16. Kannan, K. and Menaga, A. (2022), "Risk factor prediction by naive bayes classifier, logistic regression models, various classification and regression machine learning techniques", Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92(1), 63-79. https://doi.org/10.1007/s40011-021-01278-3.
  17. Karahan, O. and Atis, C.D. (2011), "The durability properties of polypropylene fiber reinforced fly ash concrete", Mater. Des., 32(2), 1044-1049. https://doi.org/10.1016/j.matdes.2010.07.011.
  18. Liu, T., Liu, X. and Feng, P. (2020), "A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects", Compos. Part B: Eng., 191, 107958. https://doi.org/10.1016/j.compositesb.2020.107958.
  19. Ren, C., Yu, J., Zhang, C., Liu, X., Zhu, Y. and Yao, W. (2023), "Micro-macro approach of anisotropic damage: A semi-analytical constitutive model of porous cracked rock", Eng. Fracture Mechanics, 290, 109483. https://doi.org/10.1016/j.engfracmech.2023.109483.
  20. Singh, A., Wang, Y., Zhou, Y., Sun, J., Xu, X., Li, Y., Liu, Z., Chen, J. and Wang, X. (2023), "Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials", Construct. Build. Mater., 408, 133689. https://doi.org/10.1016/j.conbuildmat.2023.133689.
  21. Tang, Y., Wang, Y., Wu, D., Chen, M., Pang, L., Sun, J., Feng, W. and Wang, X. (2023), "Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis", Rev. Adv. Mater. Sci., 62(1). https://doi.org/10.1515/rams-2023-0347.
  22. Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin-Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  23. Verron, S., Tiplica, T. and Kobi, A. (2008), "Fault detection and identification with a new feature selection based on mutual information", J. Process Control, 18(5), 479-490. https://doi.org/10.1016/j.jprocont.2007.08.003.
  24. Walczak, S. and Cerpa, N. (2003), "Artificial neural networks", In Encyclopedia of Physical Science and Technology, 65(6), 631-645. https://doi.org/10.1016/B0-12-227410-5/00837-1.
  25. Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Construct. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740.
  26. Wei, Y., Chai, J., Qin, Y., Li, Y., Xu, Z., Li, Y. and Ma, Y. (2021), "Effect of fly ash on mechanical properties and microstructure of cellulose fiber-reinforced concrete under sulfate dry-wet cycle attack", Construct. Build. Mater., 302, 124207. https://doi.org/10.1016/j.conbuildmat.2021.124207.
  27. Wu, Z., Wong, H.S. and Buenfeld, N.R. (2017), "Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking", Cement Concrete Res., 98, 136-154. https://doi.org/10.1016/j.cemconres.2017.04.006.
  28. Yao, X., Lyu, X., Sun, J., Wang, B., Wang, Y., Yang, M., Wei, Y., Elchalakani, M., Li, D. and Wang, X. (2023), "AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition", Construct. Build. Mater., 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898.
  29. Zhang, C. and Abedini, M. (2023), "Strain rate influences on concrete and steel material behavior, state-of-the-art review", Archiv. Comput. Meth. Eng., 30(7), 4271-4298. https://doi.org/10.1007/s11831-023-09937-6.
  30. Zhou, F., Jiang, H., Huang, L., Hu, Y., Xie, Z., Zeng, Z., Liu, M., Wang, B. and Zhou, X. (2023a), "Early shrinkage modeling of complex internally confined concrete based on capillary tension theory", Buildings, 13(9), 2201. https://doi.org/10.3390/buildings13092201.
  31. Zhou, F., Li, W., Hu, Y., Huang, L., Xie, Z., Yang, J., Wu, D. and Chen, Z. (2023b), "Moisture diffusion coefficient of concrete under different conditions", Buildings, 13(10), 2421. https://doi.org/10.3390/buildings13102421.
  32. Zhou, S., Lu, C., Zhu, X. and Li, F. (2021), "Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low Alkali content", Eng., 7(11), 1631-1645. https://doi.org/10.1016/j.eng.2020.10.016.