References
- Abdelrahman, A.A., Shanab, R.A., Esen, I. and Eltaher, M.A. (2022), "Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory", Steel. Compos. Struct., 44(2), 241-256. https://doi.org/10.12989/scs.2022.44.2.241.
- Abro, K.A. and Gomez-Aguilar, J.F. (2020), "Role of Fourier sine transform on the dynamical model of tensioned carbon nanotubes with fractional operator", Math. Method. Appl. Sci., https://doi.org/10.1002/mma.6655.
- Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couplestress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., Int. J., 26(1), 89-102. http://dx.doi.org/10.12989/scs.2018.26.1.089.
- Arani, A.G., Kiani, Fand Afshari, H. (2021), "Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels", J. Sandw. Struct. Mater., 23(1), 255-278. https://doi.org/10.1177/1099636219830787.
- Babaei, H. (2022a). "Thermomechanical analysis of snap-buckling phenomenon in long FG-CNTRC cylindrical panels resting on nonlinear elastic foundation", Compos. Struct., 286, 115199. https://doi.org/10.1016/j.compstruct.2022.115199.
- Babaei, H. (2022b). "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Mathem. Comput., 413, 126606. https://doi.org/10.1016/j.amc.2021.126606
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus, 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
- Cho, J.R. (2022), "Buckling analysis of functionally graded plates resting on elastic foundation by natural element method", Steel Compos. Struct., 44(2), 157-167. https://doi.org/10.12989/scs.2022.44.2.157.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method. Appl. Sci., https://doi.org/10.1002/mma.7069.
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4), 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method. Appl. Sci., https://doi.org/10.1002/mma.7069.
- Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Archiv. Civil Mech. Eng., 23, 97. https://doi.org/10.1007/s43452-023-00634-6.
- Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlinear Dyn., 111(15), 13723-13752. https://doi.org/10.1007/s11071-023-08564-x.
- Ding, H.X. and She, G.L. (2023c), "Nonlinear combined resonances of axially moving graphene platelets reinforced metal foams cylindrical shells under forced vibrations", Nonlinear Dyn., https://doi.org/10.1007/s11071-023-09059-5.
- Ding, H.X., Eltaher, M.A. and She, G.L. (2023a), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aeros. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
- Ding, H.X., Liu, H.B., She, G.L. and Wu, F. (2023c), "Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory", Comput. Concrete, 32(2), 207-215. https://doi.org/10.12989/cac.2023.32.2.207.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2023b), "Propagation characteristics of guided waves in CNTRCs plates resting on elastic foundations in a thermal environment", Waves Random Complex Media. https://doi.org/10.1080/17455030.2023.2235611.
- Dong, Y.H., He, L.W., Wang, L., Li, Y.H. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: Analytical study", Aerosp. Sci. Technol., 82-83, 466-478. https://doi.org/10.1016/j.ast.2018.09.037.
- Dong, Y.H., Li, X.Y., Gao, K., Li, Y.H. and Yang, J. (2020), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlinear. Dyn., 99(2), 981-1000. https://doi.org/10.1007/s11071-019-05297-8.
- Dong, Y.H., Zhu, B., Wang, Y.,Li, Y.H. and Yang, J. (2018), "Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load", J. Sound. Vib., 437, 79-96. https://doi.org/10.1016/j.jsv.2018.08.036.
- Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9.
- Eipakchi, H. and Nasrekani, F.M. (2022), "Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness", Steel Compos. Struct., 43(2), 241-256. https://doi.org/10.12989/scs.2022.43.2.241.
- Faleh, N.M. and Ahmed, R.A., and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 13, 1-14. https://doi.org/10.1016/j.ijengsc ci.2018.08.007.
- Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
- Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
- Hajilak, Z.E., Pourghader, J., Hashemabadi, D., Bagh, F.S., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based. Des. Struct., 47(5), 521-545. https://doi.org/ 10.1080/15397734.2019.1566743.
- Hendi, A., Eltaher, M.A, Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6),787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
- Li, H., Lv, H.Y., Sun, H., Qin, Z.Y., Xiong, J., Han, Q.K., Liu, JG. and Wang, X.P. (2021), "Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions", J. Sound. Vib., 496, 115935. https://doi.org/ 10.1016/j.jsv.2021.115935.
- Li, H.C., Pang, F.Z., Miao, X.H. and Li, Y.H. (2019), "Jacobi-Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: A unified formulation", Comput. Math. Appl.,77(2),427-440. https://doi.org/10.1016/j.camwa.2 018.09.046.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel Compos Struct., 46(5), 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
- Liew, K.M., Ng, T.Y., Zhao, X. and Reddy, J.N. (2002), "Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells", Comput. Meth. Appl. Mech. Eng., 191(37-38), 4141-4157. https://doi.org/10.1007/s11071-019-05297-8.
- Liu, Y.F., Qin, Z.Y. and Chu, F.L. (2021), "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate", Nonlinear. Dyn., 104(2),1007-1021. https://doi.org/ 10.1007/s11071-021-06358-7.
- Loy, C.T., Lam, K.Y. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3),193-198. https://doi.org/10.1155/1997/538754.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Majidi-Mozafari, K., Bahaadini, R. and Saidi, A.R. (2021), "Aeroelastic flutter analysis of functionally graded spinning cylindrical shells reinforced with graphene nanoplatelets in supersonic flow", Mater. Res. Express., 8(11), 115012. https://doi.org/10.1088/2053-1591/ac2ce4.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022a), "Free vibration of FG-CNTRCs nanoplates/shells with temperature-dependent properties", Mathematics., 10(4),583. https://doi.org/10.3390/math10040583.
- Melaibari, A., Daikh, A.A., Basha, M., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022b), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Mathematics, 10(3), 408. https://doi.org/10.3390/math10030408.
- Mellouli, H., Jrad, H., Wali, M. and Dammak, F. (2020), "Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method", Comput. Math. Appl., 79(11), 3160-3178. https://doi.org/10.1016/j.camwa.2020.01.015.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M. (2021), "Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory", J. Strain. Anal. Eng., 56(3),181-192. https://doi.org/10.1 177/0309324720939811. https://doi.org/10.1177/0309324720939811
- Niu, Y., Zhang, W. and Guo, X.Y. (2019), "Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets", Eur. J. Mech. A-Solid., 77, 103798. https://doi.org/10.1016/j.euromechso1.2019.103798.
- Patnaik, S.S. and Roy, T. (2021), "Vibration characteristics and damping properties of functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures under hygrothermal conditions", J. Vib. Control., 27(21-22), 2494-251, 1077546320961718. https://org/10.1177/1077546320961718.
- Pinnola, F.P., Vaccaro, M.S., Barretta, R., Francesco, M., and Ruta, G. (2022), "Elasticity problems of beams on reaction-driven nonlocal foundation", Archive Appl. Mech., 1-31. http://doi.org/10.1007/s00419-022-02161-x.
- Qin, Z.Y., Pang, X.J., Safaei, B. and Chu, F.L. (2019) "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
- Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Three-dimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control., 26(19-20), 1627-1645. https://doi.org/10.1177/1077546320902340.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- Shokrgozar, A., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2022), "Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell", Mech. Based. Des. Struct., 50(2), 509-536. https://doi.org/10.1080/15397734.2020.1719509.
- Song, J.P. and She, G.L. (2023), "Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions", Struct. Eng. Sci., 86(3), 361-371. https://doi.org/10.12989/sem.2023.86.3.361.
- Thang, P.T., Duc, N.D. and Nguyen-Thoi, T. (2017), "Thermomechanical buckling and post-buckling of cylindrical shell with functionally graded coatings and reinforced by stringers", Aerosp. Sci. Technol., 66, 392-401. https://doi.org/10.1016/j.ast.2017.03.023.
- Thang, P.T., Thoi, T.N. and Lee, J. (2019), "Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections", Eur. J. Mech. A-solid, 73, 483-491. https://doi.org/10.1016/j.e uromechsol.2018.10.008.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
- Xi, F. (2022), "Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets", Steel Compos. Struct., 44(1), 65-79. https://doi.org/10.12989/scs.2022.44.1.065.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Xu, J.Q. and She, G.L. (2023a), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
- Xu, J.Q. and She, G.L. (2023b), "The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection", Geomech. Eng., 35(1), 81-93. https://doi.org/10.12989/gae.2023.35.1.081.
- Xu, J.Q., She, G.L., Li. Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection", Steel Compos. Struct., 47(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlinear. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
- Wu, F. and She, G.L. (2023), "Wave propagation in double nanobeams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495.
- Zenkour, A.M. and Radwan, A.F. (2019), "Bending response of FG plates resting on elastic foundations in hygro thermal environment with porosities", Compos. Struct., 213, 133-143. https://doi.org/10.1016/j.compstruct.2019.01.065.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2023.2180556.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., Ding, H.X., She, G.L. and Tounsi, A. (2023d), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.
- Zhang, Y.W., She, G.L. and Eltaher, M.A. (2023d), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aeros. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid, 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.