DOI QR코드

DOI QR Code

Finite element analysis of corner cracked aluminum panels repaired with bonded composite patch

  • Abdelkader Boulenouar (Laboratoire de Matériaux et Systemes Reactifs - LMSR. Djillali Liabes University of Sidi Bel Abbes) ;
  • Mohammed A. Bouchelarm (Laboratoire de Matériaux et Systemes Reactifs - LMSR. Djillali Liabes University of Sidi Bel Abbes) ;
  • Noureddine Benseddiq (Unite de Mecanique de Lille, EA 7512 UML, University of Lille)
  • Received : 2022.08.26
  • Accepted : 2023.10.12
  • Published : 2023.11.10

Abstract

In this study, the three-dimensional finite element method is used to analyze the behavior of corner cracks in finite-thickness plates repaired with a composite patch. The normalized stress intensity factor at the crack front is used as fracture criterion. Comparison of stress intensity factor values at the internal and external positions of repaired quarter-elliptical corner crack was done, for three repair techniques. The influence of mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor (SIF) at the crack-front was highlighted. The obtained results show that the application of double patch leads to a remarkable reduction of SIF at the crack front, compared to facial and lateral repairs.

Keywords

References

  1. Bachir Bouiadjra B., Oudad W., Albedah A., Benyahia F. and Belhouari M. (2012), "Effects of the adhesive disband on the performances of bonded composite repairs in aircraft structures", Mater. Des., 37, 89-95. https://doi.org/10.1016/j.matdes.2011.12.028.
  2. Baker A.A. and Chester, R.J. (1993), "Recent advances in bonded composite repair technology for metallic aircraft components", In: Proceeding of the international conference on advanced composite materials, Wollongong, Australia. 45-49.
  3. Baker, A.A. (1984), "Repair of cracked or defective metallic aircraft components with advanced fibre composites-an overview of Australian work", Compos. Struct., 2(2), 153-181. https://doi.org/10.1016/0263-8223(84)90025-4.
  4. Baker, A.A. (1988), "Crack patching", in: A.A. Baker, R. Jones (Eds.), "Bonded repair of aircraft structure", Martinus Nijhoff, Dordrecht, The Netherlands, (Chapter 6: Experimental studies, practical application). https://doi.org/10.1007/978-94-009-2752-0.
  5. Baker, A.A. and Jones, R. (1988), "Bonded repair of aircraft structures", Dordrecht: Martinus Nijhoff Publishers. https://doi.org/10.1007/978-94-009-2752-0.
  6. Belhouari, M., Bachir Bouiadjra, B., Megueni, A. and Kaddouri, K. (2004), "Comparison of double and single bonded repairs to symmetric composite structures: a numerical analysis", Compos. Struct., 65(1), 47-53. https://doi.org/10.1016/j.compstruct.2003.10.005.
  7. Benyahia, F., Albedah, A. and Bouiadjra, B.A.B. (2014), "Elliptical and circular bonded composite repair under mechanical and thermal loading in aircraft structures", Mater. Res., 17(5), 1219-1225. https://doi.org/10.1590/1516-1439.259613.
  8. Berrahal, L., Boulenouar, A., Ferhat, Y.A., Miloudi, A. and Naoum, H. (2023), "FE analysis of crack problems in functionally graded materials under thermal stress", Int. J. Interact. Des. Manufact., 17, 1633-1644 1-12. https://doi.org/10.1007/s12008-022-01179-3.
  9. Bouchelarm, M.A., Boulenouar, A. and Chafi, M. (2022), "Numerical analysis of bonded composite patch efficiency in the case of lateral U and V-notched aluminium panels", Frattura ed Integrita Strutturale, 16(60), 62-72. https://doi.org/10.3221/IGF-ESIS.60.05.
  10. Bouchelarm, M.A., Chafi, M., Boulenouar, A. and Benseddiq, N. (2023), "Effect of the material gradation on the fracture trajectory in ceramic/metal functionally graded materials", Arch. Metall. Mater. (Accepted paper)
  11. Bouchelarm, M.A., Mazari, M. and Benseddiq, N. (2017), "Stress intensity factor KI and T-stress determination in HDPE material", J. Fail. Anal. Prevent., 17, 919-934. https://doi.org/10.1007/s11668-017-0322-3.
  12. Bouiadjra, B.B., Bouanani, M.F., Albedah, A., Benyahia, F. and Es-Saheb, M. (2011), "Comparison between rectangular and trapezoidal bonded composite repairs in aircraft structures: A numerical analysis", Mater. Des., 32(6), 3161-3166. https://doi.org/10.1016/j.matdes.2011.02.053.
  13. Boulenouar, A., Aminallah, M. and Benamara N. (2013), "Computation of the SIF for repaired semi-circular surface cracks in finite-thickness plates with bonded composite patch", J. Mater. Processes Environ., 1(2), 121-127.
  14. Boulenouar, A., Hebbar, I. And Bouchelarm, M.A. (2023), "Mixed-mode fracture analysis of FGMs using Jk-integral: Formulation and FE implementation", Theoretic. Appl. Fracture Mech., 125, 103886. https://doi.org/10.1016/j.tafmec.2023.103886.
  15. Callinan, R.J., Sanderson, S. and Keeley, D. (1997), "Finite element analysis of an F-111 lower wing skin fatigue crack repair", Melbourne: DSTO Aeronautic. Maritime Res. Lab., 55.
  16. Cetisli, F. and Kaman, M.O. (2014), "Numerical analysis of interface crack problem in composite plates jointed with composite patch", Steel Compos. Struct., 16(2), 203-220. https://doi.org/10.12989/scs.2014.16.2.203.
  17. Chafi, M. and Boulenouar, A. (2019), "A numerical modelling of mixed mode crack initiation and growth in functionally graded materials", Mater. Res., 22(3). https://doi.org/10.1590/1980-5373-MR-2018-0701.
  18. Chow, W.T. and Atluri, S.N. (1997), "Composite patch repairs of metal structures: adhesive nonlinearity, thermal cycling and debonding", AIAA J., 35(9), 1528-1535. https://doi.org/10.2514/2.7481.
  19. Gu, L., Kasavajhala, A.R.M. and Zhao, S. (2011), "Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs", Compos. Part B, 42, 505-510. https://doi.org/10.1016/j.compositesb.2010.11.014.
  20. Hart-Smith, L.J. (1985), "The design of repairable advanced composite structures", Long Beach: Douglas Aircraft Company. https://doi.org/10.4271/851830.
  21. Hosseini-Toudeshky, H., Ghaffari, M.A. and Mohammadi, B. (2012), "Finite element fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches", Compos. Struct., 94(5), 1771-1780. https://doi.org/10.1016/j.compstruct.2012.01.002.
  22. Hosseini-Toudeshky, H., Mohammadi, B. and Daghyani, H.R. (2006), "Mixed-mode fracture analysis of aluminium repaired panels using composite patches", Compos. Sci. Technol., 66(2), 188-198. https://doi.org/10.1016/j.compscitech.2005.04.028.
  23. Hosseini-Toudeshky, H., Mohammadi, B., Sadeghi, G. and Daghyani, H.R. (2007), "Numerical and experimental fatigue crack growth analysis in mode-I for repaired aluminum panels using composite material", Compos. Part A: Appl. Sci. Manufact., 38(4), 1141-1148. https://doi.org/10.1016/j.compositesa.2006.06.003.
  24. Hosseini-Toudeshky, H., Saber, M. and Mohammadi, B. (2009), "Finite element crack propagation of adhesively bonded repaired panels in general mixed-mode conditions", Finite Elements Anal. Des., 45(2), 94-103. https://doi.org/10.1016/j.finel.2008.07.010.
  25. Jones, R. and Chiu, W.K. (1999), "Composite repairs to crack in thick metallic components", Compos. Struct., 44(1), 17-29. https://doi.org/10.1016/S0263-8223(98)00108-1.
  26. Lena, M.R., Klug, J.C. and Sun, C.T. (1998), "Composite patches as reinforcements and crack arrestors in aircraft structures", J. Aircraft, 35(2), 318-323. https://doi.org/10.2514/2.2302.
  27. Maligno, A.R., Soutis, C. and Silberschmidt, V.V. (2013), "An advanced numerical tool to study fatigue crack propagation in aluminium plates repaired with a composite patch", Eng. Fract. Mech., 99, 62-78. https://doi.org/10.1016/j.engfracmech.2013.01.006.
  28. Meran, A.P. and Samanci, A. (2017), "Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate", Steel Compos. Struct, 25(6), 685-692. https://doi.org/10.12989/scs.2017.25.6.685.
  29. Merzoug, M., Boulenouar A. and Benguediab M. (2017), "Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch", Steel Compos. Struct., 25(2), 209-216. https://doi.org/10.12989/scs.2017.25.2.209.
  30. Mhamdia R., Bouadjra B. B., Serier B., Ouddad W., Feaugas X. and Touzain, S. (2011), "Stress intensity factor for repaired crack with bonded composite patch under thermo-mechanical loading", J. Reinforce. Plastics Compos., 30(5), 416-424. https://doi.org/10.1177/0731684410397899.
  31. Mhamdia, R., Serier, B., Bouiadjra, B.B. and Belhouari, M. (2012), "Numerical analysis of the patch shape effects on the performances of bonded composite repair in aircraft structures", Compos. Part B: Eng., 43(2), 391-397. https://doi.org/10.1016/j.compositesb.2011.08.047.
  32. Nikishkov, G.P. and Atluri, S.N. (1987), "Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the 'equivalent domain integral'method", Int. J. Numer. Meth. Eng., 24(9), 1801-1821. https://doi.org/10.1002/nme.1620240914.
  33. Oudad, W., Bouiadjra, B. B., Belhouari, M., Touzain, S. and Feaugas, X. (2009), "Analysis of the plastic zone size ahead of repaired cracks with bonded composite patch of metallic aircraft structures", Comput. Mater. Sci., 46(4), 950-954. https://doi.org/10.1016/j.commatsci.2009.04.041.
  34. Ouinas, D., Bouiadjra, B. B., Serier, B. and Said Bekkouche, M. (2007), "Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge", Compos. Struct., 80(4), 514-522. https://doi.org/10.1016/j.compstruct.2006.07.005.
  35. Ramji, M. and Srilakshmi, R. (2012), "Design of composite patch reinforcement applied to mixed-mode cracked panel using finite element analysis", J. Reinforced Plastics Compos., 31(9), 585-595. https://doi.org/10.1177/0731684412440601.
  36. Ramji, M., Srilakshmi, R. and Prakash, M.B. (2013), "Towards optimization of patch shape on the performance of bonded composite repair using FEM", Compos. Part B: Eng., 45(1), 710-720. https://doi.org/10.1016/j.compositesb.2012.07.049.
  37. Rasane, A.R., Kumar, P. And Khond, M.P. (2017). "Optimizing the size of a CFRP patch to repair a crack in a thin sheet", J. Adhesion, 93(13), 1064-1080. https://doi.org/10.1080/00218464.2016.1204236.
  38. Ratwani, M.M. (1979), "Analysis of cracked, adhesively bonded laminated structures", AIAA J., 17(9), 988-994. https://doi.org/10.2514/3.61263.
  39. Rose, L.R.F. (1982), "A cracked plate repaired by bonded reinforcement", Int. J. Fract., 18(2), 135-144. https://doi.org/10.1007/BF00019638.
  40. Shinde, P.S., Kumar, P., Singh, K.K., Tripathi, V.K., Aradhi, S. and Sarkar, P.K. (2017), "The role of yield stress on cracked thin panels of aluminum alloys repaired with a fRP patch", J. Adhesion, 93(5), 412-429. https://doi.org/10.1080/00218464.2015.1078243.
  41. Umamaheswar Turaga, V.R.S. and Singh, R. (1999), "Modelling of a patch repair to a thin cracked sheet", Eng. Fract. Mech., 62(2-3), 267-289. https://doi.org/10.1016/S0013-7944(98)00088-5.