DOI QR코드

DOI QR Code

Seismic retrofit of structures using added steel column friction dampers

  • Mohammad Mahdi Javidan (Department of Global Smart City, Sungkyunkwan University) ;
  • Asad Naeem (Department of Civil and Architectural Engineering, Balochistan University of Information Technology) ;
  • Jinkoo Kim (Department of Global Smart City, Sungkyunkwan University)
  • Received : 2023.01.16
  • Accepted : 2023.09.18
  • Published : 2023.11.10

Abstract

In this study, the feasibility and applicability of a friction damper with a vertical installation scheme are investigated. This device is composed of a steel section and two friction hinges at both ends which dissipate seismic energy. Due to its small width and vertical installation scheme, the proposed damper can minimize the interference with architectural functions. To evaluate the performance of the proposed damper, its mechanical behavior is theoretically evaluated and the required formulas for the yield strength and elastic stiffness are derived. The theoretical formulas are verified by establishing the analytical model of the damper in the SAP2000 software and comparing their results. To further investigate the performance of the developed damper, the provided analytical model is applied to a 4-story reinforced concrete (RC) structure and its performance is evaluated before and after retrofit under the Maximum Considered Earthquake (MCE) hazard level. The seismic performance is thoroughly evaluated in terms of maximum interstory drift ratio, displacement time history, residual displacement, and energy dissipation. The results show that the proposed damper can be efficiently used to protect the structure against seismic loads.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2006631).

References

  1. Agha Beigi, H., Christopoulos, C., Sullivan, T. and Calvi, M. (2015), "Seismic response of a case study soft story frame retrofitted using a GIB system", Earthq. Eng. Struct. Dyn., 44(7), 997-1014. https://doi.org/10.1002/eqe.2496.
  2. ASCE (2013), Seismic Rehabilitation of Existing Buildings. ASCE/SEI 41-13. Reston, VA, ASCE.
  3. Beigi, H.A., Christopoulos, C., Sullivan, T. and Calvi, G.M. (2014), "Gapped-inclined braces for seismic retrofit of softstory buildings", J. Struct. Eng., 140(11), 04014080. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001006.
  4. CEN (European Committee for Standardization) (2005), Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings. Brussels.
  5. Computers and Structures Inc. (CSI), (2017), "SAP2000" Berkeley, CA.
  6. Fajfar, P. (2000), "A nonlinear analysis method for performance based seismic design", Earthq. Spectra, 16(3), 573-592. https://doi.org/10.1193/1.1586128
  7. FEMA (2009), Quantification of Building Seismic Performance Factors, FEMA P695. Washington, DC, Federal Emergency Management Agency.
  8. He, Z., Huang, X., Xu, Z. D., Shi, Q., Guo, Y. and Kim, J. (2022), "Experimental study on seismic performance of prefabricated viscoelastic damping bolted joints", Eng. Struct., 256, 113933. https://doi.org/10.1016/J.ENGSTRUCT.2022.113933.
  9. Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first-story structures using rotational friction dampers", J. Struct. Eng., 145(12), 04019162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002433.
  10. Javidan, M.M. and Kim, J. (2020a), "Experimental and numerical sensitivity assessment of viscoelasticity for polymer composite materials", Sci. Rep., 10(1). https://doi.org/10.1038/s41598-020-57552-3.
  11. Javidan, M.M. and Kim, J. (2020b), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/SCS.2020.37.3.259.
  12. Javidan, M.M. and Kim, J. (2022a), "A rotational friction damper-brace for seismic design of resilient framed structures", J. Build. Eng., 51, 104248. https://doi.org/10.1016/J.JOBE.2022.104248.
  13. Javidan, M.M. and Kim, J. (2022b), "A simplified ductility-based design procedure for seismic retrofit of structures using hysteretic devices", J. Build. Eng., 57, 104877. https://doi.org/10.1016/J.JOBE.2022.104877.
  14. Javidan, M.M., Chun, S. and Kim, J. (2021), "Experimental study on steel hysteretic column dampers for seismic retrofit of structures", Steel Compos. Struct., 40(4), 495-509. https://doi.org/10.12989/SCS.2021.40.4.495.
  15. Lee, J., Kang, H. and Kim, J. (2017), "Seismic performance of steel plate slit-friction hybrid dampers", J. Constr. Steel Res., 136, 128-139. https://doi.org/10.1016/J.JCSR.2017.05.005.
  16. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36, 163-177. https://doi.org/10.12989/SCS.2020.36.2.163.
  17. Mostoufi-Afshar, P. and Zahrai, S.M. (2020), "Seismic retrofit of steel buildings using external resistant RC walls and friction dampers", Struct. Eng. Mech., 769(6), 823-837. https://doi.org/10.12989/sem.2020.76.6.823.
  18. Naeem, A. and Kim., J. (2018), "Seismic performance evaluation of a spring viscous damper cable system", Eng. Struct., 176, 455-467. https://doi.org/10.1016/J.ENGSTRUCT.2018.09.055.
  19. Naeem, A. and Kim., J. (2019), "Seismic performance evaluation of a multi-slit damper", Eng. Struct., 189, 332-346. https://doi.org/10.1016/J.ENGSTRUCT.2019.03.107.
  20. PEER (2014), PEER NGA Database, PEER Ground Motion Database. https://ngawest2.berkeley.edu/.
  21. Sam-Daliri, P., Zahrai, S.M. and Dahaghin, H. (2021), "Towards optimal slip force and stiffness distribution in designing friction dampers", Struct. Eng. Mech., 76(6), 823-837. https://doi.org/10.12989/sem.2020.76.6.823.
  22. Vaseghi Amiri, J., Navayinia, B. and Navaei, S. (2011), "Evaluation of performance of eccentric braced frame with friction damper", Struct. Eng. Mech., 39(5), 717-732. http://dx.doi.org/10.12989/sem.2011.39.5.717.
  23. Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991), "Seismic testing of steel plate energy dissipation devices", Earthq. Spectra, 7(4), 563-604. https://doi.org/10.1193/1.1585644.
  24. Xu, Z. D., Xu, F.H. and Chen, X. (2016), "Vibration suppression on a platform by using vibration isolation and mitigation devices", Nonlinear Dyn., 83, 1341-1353. https://doi.org/10.1007/s11071-015-2407-4.
  25. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", J. Construct. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.
  26. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P., Hashemi, A. and Quenneville, P. (2021), "Experimental study on cyclic performance of a damage-free brace with self-centering connection", J. Struct. Eng., 147(1), 04020299. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002869.