DOI QR코드

DOI QR Code

Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modification, drug combination, and micro- or nano- delivery system

  • Qi-rui Hu (State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University) ;
  • Huan Hong (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University) ;
  • Zhi-hong Zhang (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University) ;
  • Hua Feng (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University) ;
  • Ting Luo (State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University) ;
  • Jing Li (State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University) ;
  • Ze-yuan Deng (State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University) ;
  • Fang Chen (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University)
  • 투고 : 2023.01.30
  • 심사 : 2023.07.19
  • 발행 : 2023.11.01

초록

Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.

키워드

과제정보

We would like to thank the following funding sources: The Academic and Technical Leaders Training Program of Major Disciplines in Jiangxi Province-Young Talents Programme (NO. 20204BCJ23025), and the Natural Science Foundation of Jiangxi Province (NO. 20224BAB206109).

참고문헌

  1. Lee IS, Kang KS, Kim SY. Panax ginseng pharmacopuncture: current status of the research and future challenges. Biomolecules 2019;10(1):33.
  2. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2021;45(2):199-210. https://doi.org/10.1016/j.jgr.2020.02.004
  3. Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician 2003;68(8):1539-42.
  4. Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: from pharmacology to toxicology. Food Chem Toxicol 2017;107(Pt A):362-72. https://doi.org/10.1016/j.fct.2017.07.019
  5. Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: biological activity and structural modification. Eur J Med Chem 2020;189:112087.
  6. Wu HC, Hu QR, Luo T, Wei WC, Wu HJ, Li J, Zheng LF, Xu QY, Deng ZY, Chen F. The immunomodulatory effects of ginsenoside derivative Rh2-O on splenic lymphocytes in H22 tumor-bearing mice is partially mediated by TLR4. Int Immunopharmacol 2021;101(Pt B):108316.
  7. Tang M, Xie X, Yang Y, Li F. Ginsenoside compound K- a potential drug for rheumatoid arthritis. Pharmacol Res 2021;166:105498.
  8. Lee H, Kong G, Tran Q, Kim C, Park J, Park J. Relationship between ginsenoside Rg3 and metabolic syndrome. Front Pharmacol 2020;11:130.
  9. Chen YY, Liu QP, An P, Jia M, Luan X, Tang JY, Zhang H. Ginsenoside Rd: a promising natural neuroprotective agent. Phytomedicine 2022;95:153883.
  10. Fan W, Huang Y, Zheng H, Li S, Li Z, Yuan L, Cheng X, He C, Sun J. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: pharmacology and mechanisms. Biomed Pharmacother 2020;132:110915.
  11. Verstraeten SL, Lorent JH, Mingeot-Leclercq MP. Lipid membranes as key targets for the pharmacological actions of ginsenosides. Front Pharmacol 2020;11:576887.
  12. Ben-Eltriki M, Deb S, Hassona M, Meckling G, Fazli L, Chin MY, Lallous N, Yamazaki T, Jia W, Rennie PS, et al. 20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Oncotarget 2018;9(30):20965-78. https://doi.org/10.18632/oncotarget.24695
  13. Yang L, Zhang XY, Li K, Li AP, Yang WD, Yang R, Wang P, Zhao ZH, Cui F, Qin Y, et al. Protopanaxadiol inhibits epithelial-mesenchymal transition of hepatocellular carcinoma by targeting STAT3 pathway. Cell Death Dis 2019;10(9):630.
  14. Pan W, Xue B, Yang C, Miao L, Zhou L, Chen Q, Cai Q, Liu Y, Liu D, He H, et al. Biopharmaceutical characters and bioavailability improving strategies of ginsenosides. Fitoterapia 2018;129:272-82. https://doi.org/10.1016/j.fitote.2018.06.001
  15. Kong LT, Wang Q, Xiao BX, Liao YH, He XX, Ye LH, Liu XM, Chang Q. Different pharmacokinetics of the two structurally similar dammarane sapogenins, protopanaxatriol and protopanaxadiol, in rats. Fitoterapia 2013;86:48-53. https://doi.org/10.1016/j.fitote.2013.01.019
  16. Huang J, Zhang J, Bai J, Xu W, Wu D, Qiu X. LC-MS/MS determination and interaction of the main components from the traditional Chinese drug pair Danshen-Sanqi based on rat intestinal absorption. Biomed Chromatogr 2016;30(12):1928-34. https://doi.org/10.1002/bmc.3768
  17. Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 2003;84(2-3):187-92. https://doi.org/10.1016/S0378-8741(02)00317-3
  18. Ota T, Maeda M, Odashima S. Mechanism of action of ginsenoside Rh2: uptake and metabolism of ginsenoside Rh2 by cultured B16 melanoma cells. J Pharm Sci 1991;80(12):1141-6. https://doi.org/10.1002/jps.2600801210
  19. Xie HT, Wang GJ, Chen M, Jiang XL, Li H, Lv H, Huang CR, Wang R, Roberts M. Uptake and metabolism of ginsenoside Rh2 and its aglycon protopanaxadiol by Caco-2 cells. Biol Pharm Bull 2005;28(2):383-6. https://doi.org/10.1248/bpb.28.383
  20. Niu T, Smith DL, Yang Z, Gao S, Yin T, Jiang ZH, You M, Gibbs RA, Petrosino JF, Hu M. Bioactivity and bioavailability of ginsenosides are dependent on the glycosidase activities of the A/J mouse intestinal microbiome defined by pyrosequencing. Pharm Res 2013;30(3):836-46. https://doi.org/10.1007/s11095-012-0925-z
  21. Kim EO, Cha KH, Lee EH, Kim SM, Choi SW, Pan CH, Um BH. Bioavailability of ginsenosides from white and red ginsengs in the simulated digestion model. J Agric Food Chem 2014;62(41):10055-63. https://doi.org/10.1021/jf500477n
  22. Ha YW, Ahn KS, Lee JC, Kim SH, Chung BC, Choi MH. Validated quantification for selective cellular uptake of ginsenosides on MCF-7 human breast cancer cells by liquid chromatography-mass spectrometry. Anal Bioanal Chem 2010;396(8):3017-25. https://doi.org/10.1007/s00216-010-3515-0
  23. Pleban K, Kopp S, Csaszar E, Peer M, Hrebicek T, Rizzi A, Ecker GF, Chiba P. Pglycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach. Mol Pharmacol 2005;67(2):365-74. https://doi.org/10.1124/mol.104.006973
  24. Yang Z, Gao S, Wang J, Yin T, Teng Y, Wu B, You M, Jiang Z, Hu M. Enhancement of oral bioavailability of 20(S)-ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metab Dispos 2011;39(10):1866-72. https://doi.org/10.1124/dmd.111.040006
  25. Zhang B, Ye H, Zhu XM, Hu JN, Li HY, Tsao R, Deng ZY, Zheng YN, Li W. Esterification enhanced intestinal absorption of ginsenoside Rh2 in Caco-2 cells without impacts on its protective effects against H2O2-induced cell injury in human umbilical vein endothelial cells (HUVECs). J Agric Food Chem 2014;62(9):2096-103. https://doi.org/10.1021/jf404738s
  26. Wang W, Wu X, Wang L, Meng Q, Liu W. Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS One 2014;9(6):e98887.
  27. Zhou S, Lim LY, Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab Rev 2004;36(1):57-104. https://doi.org/10.1081/DMR-120028427
  28. Zhang J, Zhou F, Wu X, Gu Y, Ai H, Zheng Y, Li Y, Zhang X, Hao G, Sun J, et al. 20(S)-ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo: a case for herb-drug interactions. Drug Metab Dispos 2010;38(12):2179-87. https://doi.org/10.1124/dmd.110.034793
  29. Zhang J, Zhou F, Niu F, Lu M, Wu X, Sun J, Wang G. Stereoselective regulations of P-glycoprotein by ginsenoside Rh2 epimers and the potential mechanisms from the view of pharmacokinetics. PLoS One 2012;7(4):e35768.
  30. Shi J, Cao B, Zha WB, Wu XL, Liu LS, Xiao WJ, Gu RR, Sun RB, Yu XY, Zheng T, et al. Pharmacokinetic interactions between 20(S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacol Sin 2013;34(10):1349-58. https://doi.org/10.1038/aps.2013.69
  31. Li N, Wang D, Ge G, Wang X, Liu Y, Yang L. Ginsenoside metabolites inhibit Pglycoprotein in vitro and in situ using three absorption models. Planta Med 2014;80(4):290-6. https://doi.org/10.1055/s-0033-1360334
  32. Guo W, Li Z, Yuan M, Chen G, Li Q, Xu H, Yang X. Molecular insight into stereoselective ADME characteristics of C20-24 epimeric epoxides of protopanaxadiol by docking analysis. Biomolecules 2020;10(1).
  33. Mollazadeh S, Sahebkar A, Hadizadeh F, Behravan J, Arabzadeh S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci 2018;214:118-23. https://doi.org/10.1016/j.lfs.2018.10.048
  34. Chen L, Zhou L, Wang Y, Yang G, Huang J, Tan Z, Wang Y, Zhou G, Liao J, Ouyang D. Food and sex-related impacts on the pharmacokinetics of a singledose of ginsenoside compound K in healthy subjects. Front Pharmacol 2017;8:636.
  35. Liu C, Hu M, Guo H, Zhang M, Zhang J, Li F, Zhong Z, Chen Y, Li Y, Xu P, et al. Combined contribution of increased intestinal permeability and inhibited deglycosylation of ginsenoside Rb1 in the intestinal tract to the enhancement of ginsenoside Rb1 exposure in diabetic rats after oral administration. Drug Metab Dispos 2015;43(11):1702-10. https://doi.org/10.1124/dmd.115.064881
  36. Fan H, Xiao-Ling S, Yaliu S, Ming-Ming L, Xue F, Xian-Sheng M, Li F. Comparative pharmacokinetics of ginsenoside Rg3 and ginsenoside Rh2 after oral administration of ginsenoside Rg3 in normal and walker 256 tumorbearing rats. Pharmacogn Mag 2016;12(45):21-4. https://doi.org/10.4103/0973-1296.176014
  37. Zhu JH, Xu JD, Zhou SS, Zhang XY, Zhou J, Kong M, Mao Q, Zhu H, Li SL. Differences in intestinal metabolism of ginseng between normal and immunosuppressed rats. Eur J Drug Metab Pharmacokinet 2021;46(1):93-104. https://doi.org/10.1007/s13318-020-00645-1
  38. Du LY, Jiang T, Wei K, Zhu S, Shen YL, Ye P, Zhang HE, Chen CB, Wang EP. Simultaneous quantification of four ginsenosides in rat plasma and its application to a comparative pharmacokinetic study in normal and depression rats using UHPLC-MS/MS. J Anal Methods Chem 2021;2021:4488822.
  39. Lv C, Li Q, Zhang Y, Sui Z, He B, Xu H, Yin Y, Chen X, Bi K. A UFLC-MS/MS method with a switching ionization mode for simultaneous quantitation of polygalaxanthone III, four ginsenosides and tumulosic acid in rat plasma: application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats. J Mass Spectrom 2013;48(8):904-13. https://doi.org/10.1002/jms.3230
  40. Dong WW, Xuan FL, Zhong FL, Jiang J, Wu S, Li D, Quan LH. Comparative analysis of the rats' gut microbiota composition in animals with different ginsenosides metabolizing activity. J Agric Food Chem 2017;65(2):327-37. https://doi.org/10.1021/acs.jafc.6b04848
  41. Hasebe T, Ueno N, Musch MW, Nadimpalli A, Kaneko A, Kaifuchi N, Watanabe J, Yamamoto M, Kono T, Inaba Y, et al. Daikenchuto (TU-100) shapes gut microbiota architecture and increases the production of ginsenoside metabolite compound K. Pharmacol Res Perspect 2016;4(1):e00215.
  42. Shen H, Gao XJ, Li T, Jing WH, Han BL, Jia YM, Hu N, Yan ZX, Li SL, Yan R. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism. J Ethnopharmacol 2018;216:47-56. https://doi.org/10.1016/j.jep.2018.01.021
  43. Zhou SS, Xu J, Zhu H, Wu J, Xu JD, Yan R, Li XY, Liu HH, Duan SM, Wang Z, et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Sci Rep 2016;6:22474.
  44. Alves G, Lobo LA, Domingues R, Monteiro M, Perrone D. Bioaccessibility and gut metabolism of free and melanoidin-bound phenolic compounds from coffee and bread. Front Nutr 2021;8:708928.
  45. Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016;7(3):216-34. https://doi.org/10.1080/19490976.2016.1158395
  46. Ryu JS, Lee HJ, Bae SH, Kim SY, Park Y, Suh HJ, Jeong YH. The bioavailability of red ginseng extract fermented by Phellinus linteus. J Ginseng Res 2013;37(1):108-16. https://doi.org/10.5142/jgr.2013.37.108
  47. Choi ID, Ryu JH, Lee DE, Lee MH, Shim JJ, Ahn YT, Sim JH, Huh CS, Shim WS, Yim SV, et al. Enhanced absorption study of ginsenoside compound K (20-O-β-(D-Glucopyranosyl)-20(S)-protopanaxadiol) after oral administration of fermented red ginseng extract (HYFRGTM) in healthy Korean volunteers and rats. Evid Based Complement Alternat Med 2016;2016:3908142.
  48. Hu QR, Lai PW, Chen F, Yu YF, Zhang B, Li H, Liu R, Fan Y, Deng ZY. Whole mulberry leaves as a promising functional food: from the alteration of phenolic compounds during spray drying and in vitro digestion. J Food Sci 2022;87(3):1230-43. https://doi.org/10.1111/1750-3841.16015
  49. Yoo S, Park BI, Kim DH, Lee S, Lee SH, Shim WS, Seo YK, Kang K, Lee KT, Yim SV, et al. Ginsenoside absorption rate and extent enhancement of black ginseng (CJ EnerG) over red ginseng in healthy adults. Pharmaceutics 2021;13(4).
  50. Chen J, Li M, Chen L, Wang Y, Li S, Zhang Y, Zhang L, Song M, Liu C, Hua M, et al. Effects of processing method on the pharmacokinetics and tissue distribution of orally administered ginseng. J Ginseng Res 2018;42(1):27-34. https://doi.org/10.1016/j.jgr.2016.12.008
  51. Zhu H, Shen H, Xu J, Xu JD, Zhu LY, Wu J, Chen HB, Li SL. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach. Drug Test Anal 2015;7(4):320-30. https://doi.org/10.1002/dta.1675
  52. Shen H, Zhang L, Xu JD, Ding YF, Zhou J, Wu J, Zhang W, Mao Q, Liu LF, Zhu H, et al. Effect of sulfur-fumigation process on ginseng: metabolism and absorption evidences. J Ethnopharmacol 2020;256:112799.
  53. Hu J-N, Lee K-T. Lipophilic ginsenoside derivatives production. In: Hou CT, Shaw JF, editors. Biocatalysis and biomolecular engineering. John Wiley & Sons, Inc.; 2010. p. 195-209.
  54. Zhang B, Zhu XM, Hu JN, Ye H, Luo T, Liu XR, Li HY, Li W, Zheng YN, Deng ZY. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J Agric Food Chem 2012;60(41):10278-84. https://doi.org/10.1021/jf303160y
  55. Fu BD, Bi WY, He CL, Zhu W, Shen HQ, Yi PF, Wang L, Wang DC, Wei XB. Sulfated derivatives of 20(S)-ginsenoside Rh2 and their inhibitory effects on LPS-induced inflammatory cytokines and mediators. Fitoterapia 2013;84:303-7. https://doi.org/10.1016/j.fitote.2012.12.021
  56. Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats. J Ginseng Res 2015;39(2):183-7. https://doi.org/10.1016/j.jgr.2014.11.002
  57. Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. Effect of a soluble prebiotic fiber, NUTRIOSE, on the absorption of ginsenoside Rd in rats orally administered ginseng. J Ginseng Res 2014;38(3):203-7. https://doi.org/10.1016/j.jgr.2014.03.003
  58. Zhang X, Chen S, Duan F, Liu A, Li S, Zhong W, Sheng W, Chen J, Xu J, Xiao S. Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota. J Ginseng Res 2021;45(2):334-43. https://doi.org/10.1016/j.jgr.2020.08.001
  59. He H, Shen Q, Li J. Effects of borneol on the intestinal transport and absorption of two P-glycoprotein substrates in rats. Arch Pharm Res 2011;34(7):1161-70. https://doi.org/10.1007/s12272-011-0714-y
  60. Wang S, Zang W, Zhao X, Feng W, Zhao M, He X, Liu Q, Zheng X. Effects of borneol on pharmacokinetics and tissue distribution of notoginsenoside R1 and ginsenosides Rg1 and Re in panax notoginseng in rabbits. J Anal Methods Chem 2013;2013:706723.
  61. Zheng D, Chu Y, Li S, Zhou S, Li W, Xie Y, Sun H. Enhancing effect of borneol on pharmacokinetics of ginsenoside Rb(1) , ginsenoside Rg(1) , and notoginsenoside R(1) in healthy volunteers after oral administration of compound Danshen dropping pills. Biomed Chromatogr 2022;36(5):e5311.
  62. Han Y, Chin Tan TM, Lim LY. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicol Appl Pharmacol 2008;230(3):283-9. https://doi.org/10.1016/j.taap.2008.02.026
  63. Jin ZH, Qiu W, Liu H, Jiang XH, Wang L. Enhancement of oral bioavailability and immune response of Ginsenoside Rh2 by co-administration with piperine. Chin J Nat Med 2018;16(2):143-9. https://doi.org/10.1016/S1875-5364(18)30041-4
  64. Tian Z, Pang H, Zhang Q, Du S, Lu Y, Zhang L, Bai J, Li P, Li D, Zhao M, et al. Effect of aspirin on the pharmacokinetics and absorption of panax notoginseng saponins. J Chromatogr B Analyt Technol Biomed Life Sci 2018;1074-1075:25-33. https://doi.org/10.1016/j.jchromb.2017.12.033
  65. Xiong J, Sun M, Guo J, Huang L, Wang S, Meng B, Ping Q. Enhancement by adrenaline of ginsenoside Rg1 transport in Caco-2 cells and oral absorption in rats. J Pharm Pharmacol 2009;61(3):347-52. https://doi.org/10.1211/jpp.61.03.0009
  66. Xiong J, Sun M, Guo J, Huang L, Wang S, Meng B, Ping Q. Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of sodium-dependent glucose co-transporter 1. J Pharm Pharmacol 2009;61(3):381-6. https://doi.org/10.1211/jpp/61.03.0014
  67. Cui L, Guan X, Ding W, Luo Y, Wang W, Bu W, Song J, Tan X, Sun E, Ning Q, et al. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. Int J Biol Macromol 2021;166:1035-45. https://doi.org/10.1016/j.ijbiomac.2020.10.259
  68. Wang W, Liao QP, Quan LH, Liu CY, Chang Q, Liu XM, Liao YH. The effect of Acorus gramineus on the bioavailabilities and brain concentrations of ginsenosides Rg1, Re and Rb1 after oral administration of Kai-Xin-San preparations in rats. J Ethnopharmacol 2010;131(2):313-20. https://doi.org/10.1016/j.jep.2010.06.034
  69. Xie H, Wang D, Zhang W, Yan X, Zhao Y. Comparative pharmacokinetic studies of four ginsenosides in rat plasma by UPLC-MS/MS after oral administration of panax quinquefolius-acorus gramineus and panax quinquefolius extracts. J Anal Methods Chem 2019;2019:4972816.
  70. Liang Y, Zhou Y, Zhang J, Rao T, Zhou L, Xing R, Wang Q, Fu H, Hao K, Xie L, et al. Pharmacokinetic compatibility of ginsenosides and Schisandra Lignans in Shengmai-san: from the perspective of p-glycoprotein. PLoS One 2014;9(6):e98717.
  71. Zheng Y, Feng G, Sun Y, Liu S, Pi Z, Song F, Liu Z. Study on the compatibility interactions of formula Ding-Zhi-Xiao-Wan based on their main components transport characteristics across Caco-2 monolayers model. J Pharm Biomed Anal 2018;159:179-85. https://doi.org/10.1016/j.jpba.2018.06.067
  72. Chen L, Liu L, Wang Q, Jiang Y, Tian H. Comparative pharmacokinetics study of six effective components between two dosage forms of Qixue-Shuangbu Prescription in rats by UPLC-MS/MS. Biomed Chromatogr 2021;35(10):e5179.
  73. Chen LW, Wang Q, Qin KM, Wang XL, Wang B, Chen DN, Cai BC, Cai T. Chemical profiling of Qixue Shuangbu Tincture by ultra-performance liquid chromatography with electrospray ionization quadrupole-time-of-flight high-definition mass spectrometry (UPLC-QTOF/MS). Chin J Nat Med 2016;14(2):141-6. https://doi.org/10.1016/S1875-5364(16)60007-9
  74. Bae SH, Park JB, Zheng YF, Jang MJ, Kim SO, Kim JY, Yoo YH, Yoon KD, Oh E, Bae SK. Pharmacokinetics and tissue distribution of ginsenoside Rh2 and Rg3 epimers after oral administration of BST204, a purified ginseng dry extract, in rats. Xenobiotica 2014;44(12):1099-107. https://doi.org/10.3109/00498254.2014.929192
  75. Joo KM, Lee JH, Jeon HY, Park CW, Hong DK, Jeong HJ, Lee SJ, Lee SY, Lim KM. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J Pharm Biomed Anal 2010;51(1):278-83. https://doi.org/10.1016/j.jpba.2009.08.013
  76. Cai S, Shi CH, Zhang X, Tang X, Suo H, Yang L, Zhao Y. Self-microemulsifying drug-delivery system for improved oral bioavailability of 20(S)-25-methoxyldammarane-3β, 12β, 20-triol: preparation and evaluation. Int J Nanomedicine 2014;9:913-20. https://doi.org/10.2217/nnm.14.43
  77. Chen S, Xu HQ, Zhang J, Wang CX, Liu JQ, Peng LH, Cheng JL, Liu A. A systematic study of the dissolution and relative bioavailability of four ginsenosides in the form of ultrafine granular powder, common powder and traditional pieces of Panax quinquefolius L, in vitro and in beagles. J Ethnopharmacol 2016;185:9-16. https://doi.org/10.1016/j.jep.2016.03.032
  78. Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, Lv T, Zheng YT, Sai Y. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem Toxicol 2009;47(9):2257-68. https://doi.org/10.1016/j.fct.2009.06.013
  79. Zhao L, Wang L, Chang L, Hou Y, Wei C, Wu Y. Ginsenoside CK-loaded self-nanomicellizing solid dispersion with enhanced solubility and oral bioavailability. Pharm Dev Technol 2020;25(9):1127-38. https://doi.org/10.1080/10837450.2020.1800730
  80. Jin S, Lee CH, Lim DY, Lee J, Park SJ, Song IS, Choi MK. Improved hygroscopicity and bioavailability of solid dispersion of red ginseng extract with silicon dioxide. Pharmaceutics 2021;13(7):1022.
  81. Voruganti S, Qin JJ, Sarkar S, Nag S, Walbi IA, Wang S, Zhao Y, Wang W, Zhang R. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget 2015;6(25):21379-94. https://doi.org/10.18632/oncotarget.4091
  82. Dong Y, Fu R, Yang J, Ma P, Liang L, Mi Y, Fan D. Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo. Int J Nanomedicine 2019;14:6971-88. https://doi.org/10.2147/IJN.S210882
  83. Igami K, Ozawa M, Inoue S, Iohara D, Miyazaki T, Shinoda M, Anraku M, Hirayama F, Uekama K. The formation of an inclusion complex between a metabolite of ginsenoside, compound K and γ-cyclodextrin and its dissolution characteristics. J Pharm Pharmacol 2016;68(5):646-e54.
  84. Li H, Zhang G, Wang W, Chen C, Jiao L, Wu W. Preparation, characterization, and bioavailability of host-guest inclusion complex of ginsenoside Re with gamma-cyclodextrin. Molecules 2021;26(23):7227.
  85. Kang T, Suh S, Jo HE, Choi KO. Physical, chemical, and biological characterization of ginsenoside F1 incorporated in nanostructured lipid carrier. J Food Biochem 2021:e13860.
  86. Zhang X, Zhang Y, Guo S, Bai F, Wu T, Zhao Y. Improved oral bioavailability of 20(R)-25-methoxyl-dammarane-3β, 12β, 20-triol using nanoemulsion based on phospholipid complex: design, characterization, and in vivo pharmacokinetics in rats. Drug Des Devel Ther 2016;10:3707-16. https://doi.org/10.2147/DDDT.S114374
  87. Yang F, Zhou J, Hu X, Yu SK, Liu C, Pan R, Chang Q, Liu X, Liao Y. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2. Drug Deliv Transl Res 2017;7(5):731-7. https://doi.org/10.1007/s13346-017-0402-7
  88. Zhang B, Pan W, Deng Y, He H, Gou J, Wang Y, Zhang Y, Yin T, Liu D, Tang X. Panax quinquefolium saponin liposomes prepared by passive drug loading for improving intestinal absorption. Drug Dev Ind Pharm 2020;46(10):1684-94. https://doi.org/10.1080/03639045.2020.1820036
  89. Xiong J, Guo J, Huang L, Meng B, Ping Q. The use of lipid-based formulations to increase the oral bioavailability of Panax notoginseng saponins following a single oral gavage to rats. Drug Dev Ind Pharm 2008;34(1):65-72. https://doi.org/10.1080/03639040701508292
  90. Zhu Y, Liang J, Gao C, Wang A, Xia J, Hong C, Zhong Z, Zuo Z, Kim J, Ren H, et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release 2021;330:641-57. https://doi.org/10.1016/j.jconrel.2020.12.036
  91. Yu H, Teng L, Meng Q, Li Y, Sun X, Lu J, R JL, Teng L. Development of liposomal Ginsenoside Rg3: formulation optimization and evaluation of its anticancer effects. Int J Pharm 2013;450(1-2):250-8. https://doi.org/10.1016/j.ijpharm.2013.04.065