
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

164

Manuscript received October 5, 2023
Manuscript revised October 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.10.20

External vs. Internal: An Essay on Machine Learning Agents for
Autonomous Database Management Systems

Fatima Khalil Aljwari1†

fatima6794o5@gmail.com
Umm Al Qura University

 Mecca, Saudi Arabia

Summary
There are many possible ways to configure database management
systems (DBMSs) have challenging to manage and set.The
problem increased in large-scale deployments with thousands or
millions of individual DBMS that each have their setting
requirements. Recent research has explored using machine
learning-based (ML) agents to overcome this problem's automated
tuning of DBMSs. These agents extract performance metrics and
behavioral information from the DBMS and then train models with
this data to select tuning actions that they predict will have the
most benefit. This paper discusses two engineering approaches for
integrating ML agents in a DBMS. The first is to build an external
tuning controller that treats the DBMS as a black box. The second
is to incorporate the ML agents natively in the DBMS's
architecture.
Keywords:
Essay, Machine Learning, Database Management Systems,
External, Internal.

1. Introduction

A-Tuning a DBMS is an essential part of any
database application installation. These tuning aims to
improve a DBMS's operations based on some function (e.g.,
faster execution, lower costs, better availability). Modern
DBMSs provide Application Programming Interfaces
(APIs) that allow database administrators (DBAs) to control
their runtime execution and storage operations:(1) physical
design, (2) knob configuration, (1) hardware resource
allocation, and (4) query plan hints. The Physical design
changes to the database's physical representation and data
structures. The knob configuration is optimizations that
affect the DBMS's behavior. Resource allocations
determine how the DBMS uses its available hardware to
store data and execute queries; the DBA can use either
provision new resources or redistribute existing resources.
Lastly, query plan tuning hints are directives that force the
DBMS's optimizer to make decisions for individual queries.
In the 1970s, the efforts were building self-adaptive systems
[5]. These were primarily tools based on physical database
design. In the 1990s, the database community transformed
into self-tuning systems [12]. Most self-tuning systems
targeted automated physical design [2].

The current research trend is using machine learning
(ML) to devise learned methods for automated DBMS

tuning. The newer approaches train models using data
collected about the DBMS's runtime behavior under various
execution scenarios and configurations. The agent observes
the effects of the deployed action and integrates the new
data into the models to improve their efficacy for future
decision-making.
There are two techniques developers can integrate ML-
based tuning methods for DBMSs. The first technique is to
use external agents that observe and manipulate a DBMS
through standard APIs, While the second technique is to
integrate internal components inside the DBMS.

This research discusses the trade-offs between
implementing ML-based tuning agents outside of the
DBMS versus designing a new DBMS around automation.
We start in Section background with an overview of how
DBMS tuning algorithms work. Next, we describe how to
use ML-based agents to tune systems automatically. Then
we compare the benefits of the approaches and discuss their
challenges and problems. Finally, we conclude with an
overview of two DBMS projects [1] using ML for
automated tuning. The first project is OtterTune [5], an
external tuning service for existing DBMSs, While The
second project is a new self-driving DBMS called
NoisePage [1] designed to be completely autonomous.

2. Background

Previous researchers have studied and devised
methods for automatically optimizing DBMSs. A large
group of previous work includes theoretical and applied
research [14].Before the 2010s, the methodologies for
automated DBMS tuning were either heuristic- or cost-
based optimization algorithms.ML is a large field of study
that includes many disciplines and applies to many facets of
DBMSs. We discussion to the Effects of integrating ML in
DBMSs for tuning in either existing or new systems.
 The most used approach for automated DBMS tuning is
heuristic algorithms. While the other approach for DBMS
tuning is to use cost-based algorithms that
programmatically search for improvements to the DBMSs.
The Previous work in the cost-based algorithm has
evaluated several search techniques, including greedy
search [2], branch-and-bound search [14, 8], local search

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

165

[13], and genetic algorithms [8].The most notable
application of this optimization was Microsoft's Auto
Admin application use of SQL Server's built-in cost models.

3. Automated Tuning with Machine Learning

ML-based agents for automated DBMS tuning use the
algorithms dependent on models to select actions that
improve the system's target. The agent extracts patterns and
inferences from the DBMS's past behavior to predict the
expected behavior in the future and learn how to apply it to
new actions. The agent selects an action that it believes will
provide the most benefit to its target.

Agents build their models from training data from
the DBMS and its environment. And the type of data that an
agent collects from the DBMS depends on its action domain.
Many agents objective a specific sub-system in the DBMS,
and thus they need training data related to these parts of the
system. How an agent acquires this data depends on
whether it trains its models offline or online.
Note that offline versus online approaches are not mutually
exclusive, and a DBMS can use them together.ML methods
had divided into three broad categories: There are existing
DBMS tuning agents that use either one class of algorithms
or some combination. We now describe these approaches in
the context of DBMS tuning: (1) supervised, (2)
unsupervised, and (3) reinforcement learning.

a) Supervised Machine Learning:
The agent builds models from training data that contains
both the input and expected output (i.e., labels). The goal is
for the models to learn how to produce the correct answer
for new inputs. This approach is helpful for problems where
the outcome of an action is immediately observable. The
training data input (e.g., type, predicates, input data sizes)
and the output is the cardinality that the DBMS observed
when executing the query. The objective of this agent is to
minimize the difference between the predicted and actual
cardinalities. Supervised learning has also been applied to
tune other parts of a DBMS, including performance
modeling [4].

b) Unsupervised Machine Learning:
With this approach, the agent's training data only contains
input values and not the expected output. The agent doesn't
need to know what "correct" values are to figure out what
values do not look like the correct values .It is up to the
agent to infer whether the output from the models is correct
or not.

c) Reinforcement Machine Learning:
Lastly, reinforcement learning (RL) is like unsupervised
ML in that there is no labeled training data. The agent trains
a policy model that selects actions to improve the current

environment's target objective function. RL approaches, in
general, do not make assumptions about priors, and the
models are derived only from the agent's observations. That
is useful for problems where the benefit or effect of an
action is not immediately known. For example, the agent
may add an index to improve query performance, but the
DBMS will take several minutes or even hours to build it.
Given the general-purpose nature of RL, it is one of the
most active areas of DBMS tuning research in the late 2010s.
Researchers have applied RL for query optimization [7],
index selection [10], partitioning [3, 6].

We next discuss how to integrate agents that use the
above ML approaches into DBMSs to enable them to
support autonomous tuning and optimization features. We
begin with examining strategies for running agents outside
of the DBMS in Section 3.1. Then in Section 3.2, we
consider the implications of integrating the agents directly
inside the DBMS. We first present the approach for each of
these strategies and then list some of the challenges one
must overcome.

3.1 External Agents:

An external agent tunes a DBMS without requiring
specialized ML components running inside the system. The
goal is to reuse the DBMS's existing APIs and environment
data collection infrastructure without modifying the DBMS
itself. Ideally, a developer can create the agent for a general-
purpose such that one can reuse its backend ML component
across multiple DBMSs. An agent receives objective
function data directly from the DBMS or additional third-
party monitoring tools.

Agents may also need an additional controller running
on the same machine as the DBMS or within the same
administrative domain [11]. This controller can install
changes that are not accessible through the DBMS's APIs.
The controller may also need to restart the DBMS because
many systems cannot apply changes until restart.

Challenges:
The challenges did not design in tuning DBMS for
autonomous operation. Foremost is that almost every major
DBMS that we have examined does not support making
changes to the system's configuration without periods of
unavailability, either due to restarts or blocking execution
[9].
Requiring the DBMS to halt execution to apply a change
makes it difficult for agents to explore configurations and
increases its time to collect training data.
The second issue is that an agent can only collect
performance metrics that the system exposes.
Mean that if there is additional information that the agent
needs, then it is not immediately available. The other issue
is that data is often overabundance, making it challenging

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

166

to separate signals from the noise [11]. DBMSs also do not
expose their underlying hardware to reuse training data
across operating environments.

3.2 Internal Agents:

An alternative to treating the DBMS like a black box
and tuning it with an external agent is to design its
architecture to support autonomous operation natively. The
DBMS supports one or more agents running inside the
system with this approach. These agents collect their
training data, apply changes to the DBMS, and then observe
how they affect the objective. The system does not require
guidance or approval from a human for any of these steps.
The benefit of running agents inside of the DBMS is that it
exposes more information about the system's runtime
behavior and can potentially enable more low-level control
of the DBMS than what is possible with an external agent.
Most of the proposed ML tuning agents available today do
design to extend or replace components in existing DBMSs.

Challenges:

The biggest problem with replacing a DBMS's existing
components with new ML-based implementations is hard to
capture their dependencies. Consider a tuning agent that
controls the DBMS's memory allocations. Suppose the
agent initially assigns a small amount of memory for query
result caching and a large amount to the buffer pool.
Another index tuning agent running inside the same DBMS
then chooses to build an index because memory
pressure in the buffer pool is low. But then the memory
agent decides to increase the result cache size and decrease
the buffer pool size. There are three ways to this problem,
but each has its own set of issues. The first is to use a single
centralized agent rather than separate agents. That is
potentially the most practical but dramatically increases the
complexity of the models, which requires significantly
more training data.

The second is to have each agent provide a performance
guarantee about its changes in the DBMS. The agents give
this information to a central coordinator in charge of
resource allocations. The last approach is a decentralized
architecture where agents communicate and coordinate.
One of the most expensive parts of these agents is when they
build their models from the training data.

4. OtterTUne - Automated Knob TUning
Service for Existing DBMSs

OtterTune is an external configuration tuning service that
works with any DBMS [11, 5].
As shown in Figure1, Otter Tune's architecture consists of
a client-side controller and a server-side tuning manager.

The controller is a conduit between the target DBMS and
the tuning manager. It contains DBMS-specific code for
collecting runtime information from the target DBMS (e.g.,
executing SQL commands) and installs configurations
recommended by the tuning manager. The controller
updates the DBMS's configuration file on disk and then
restarts using the appropriate administrative tool.

The tuning manager updates its repository and internal
ML models with the information provided by the controller
and then recommends a new configuration for the user to
try. The process continues even the user is satisfied with the
improvements.

4.1 Machine Learning Pipeline

Otter Tune's ML pipeline uses a combination of
supervised and unsupervised methods. It processes,
analyzes, and builds models from the data in its repository.
The Workload Characterization and Knob Identification
modules execute a background task that periodically
updates models as new data becomes available in the
storage. The tuning manager uses these models to generate
new knob configurations for the target DBMS. OtterTune's
ML pipeline has three modules:
Workload Characterization:
This first component compresses all the past metric data in
the repository into a smaller set of metrics that capture the
distinguishing characteristics for different workloads.
Knob Identification:
The next component analyzes all past observations in the
repository to determine which knobs impact the DBMS's
performance for different workloads.
Automated Tuner:
In the last step, the tuner analyzes the results it has collected
so far in the tuning session to decide which configuration to
recommend next.

Fig 1: OtterTune Architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

167

The controller connects to the target DBMS, then
collects its data, transforms the collected information into a
JSON document, and sends it to the server-side tuning
manager; then it does the following:
Sends the information to the tuning manager.
Controller gets a token from the tuning manager.
Uses this token to check the status of the tuning job.
Gets the recommended configuration when the job finishes,
and then the agent installs it in the DBMS.

5. NoisePage – (A Self-Driving) DBMS
Architecture

NoisePage is a new DBMS that we are developing to
be self-driving [1]. The DBMS's control agent runs in a
continuous loop where it selects actions to deploy that it
estimates will improve the target objective. That means that
the system can tune and optimize itself automatically
without any human intervention other than selecting the
target function on start-up.
 This (1) improves data collection efficiency and (2) reduces
model over-fitting. The DBMS then combines this offline
data with data collected online during query execution to
improve accuracy.

5.1 Machine Learning Pipeline

We next provide an overview of Noise Page's self-
driving pipeline. As shown in Figure2 illustrates the overall
architecture of the DBMS with its modeling and planning
modules.

Fig 2: overall architecture of the DBMS with its modeling and planning
modules.

Modeling: This first module is responsible for training
prediction models using data that the monitors collect from
observing its runtime process, such as forecast models that
predict the application's future workload and database state.
Forecasting is necessary so that DBMS can prepare itself
accordingly, much like a self-driving car has to indicate the
road condition up ahead.

Planning: In the second module, the DBMS uses the models
generated in the previous step to select actions that provide
the best reward given the system's current state.
Deployment: For a given action selected in the planning
module, the next step is for the DBMS to deploy it.
The DBMS's planning modules use the data it collects
during this phase to update their models and improve their
decision-making.

6. Conclusion

This paper surveyed the approaches for adding
automatic tuning agents based on ML to DBMSs. We
discussed the high-level differences of external versus
internal agents and the different challenges in these
approaches. We then discussed two examples of
architectures: OtterTune [5] and NoisePage [1]. However,
more research in both systems and ML before achieving
fully autonomous means that self-driving DBMSs. We want
to make one final point: we believe autonomous DBMSs
will not supplant DBAs. We instead envision these systems
will emancipate them from low-level tuning and allow them
to pursue higher- tasks, such as database design and
development.

References
[1] NoisePage. https://noise.page.
[2] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven

index selection tool for Microsoft SQL Server. In VLDB,
pages 146–155, 1997.

[3] G. C. Durand, M. Pinnecke, R. Piriyev, M. Mohsen, D.
Broneske, G. Saake, M. S. Sekeran, F. Rodriguez,and L.
Balami. Grid formation: Towards self-driven online data
partitioning using reinforcement learning. aiDM'18, pages
1:1–1:7, 2018.

[4] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M.
Jordan, and D. Patterson. Predicting multiple metrics for
queries: Better decisions enabled by machine learning. In
International Conference on Data Engineering, pages 592–
6017. IEEE, 2009.

[5] M. Hammer. Self-adaptive automatic database design. In
National Computer Conference, AFIPS' 77,pages 123–129,
1977.

[6] B. Hilprecht, C. Binnig, and U. Rohm. Towards learning a
partitioning advisor with deep reinforcement ¨learning. In
aiDM@SIGMOD, pages 6:1–6:4, 2019.

[7] R. Marcus and O. Papaemmanouil. Towards a hands-free
query optimizer through deep learning. In CIDR 2019, 9th
Biennial Conference on Innovative Data Systems Research,
2019.

[8] R. Nehme and N. Bruno. Automated partitioning design in
parallel database systems. In SIGMOD,SIGMOD, pages
1137–1148, 2011.

[9] A. Pavlo et al. Make Your Database Dream of Electric Sheep:
Engineering for Self-Driving Operation.2019. Under
Submission.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

168

[10] [A. Sharma, F. M. Schuhknecht, and J. Dittrich. The case for
automatic database administration using deep reinforcement
learning. CoRR, abs/1801.05643, 2018.

[11] [D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning through
large-scale machine learning. Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD
'17, pages 1009–1024, 2017.

[12] G. Weikum, C. Hasse, A. Monkeberg, and P. Zabback. The
COMFORT automatic tuning project. ̈ Information Systems,
19(5):381–432, July 1994.

[13] [B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A
smart hill-climbing algorithm for application server
configuration. In WWW, pages 287–296, 2004.

[14] [D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C.
Garcia-Arellano, and S. Fadden. DB2 design advisor:
integrated automatic physical database design. In VLDB,
pages 1087–1097, 2004.

Fatimah K. Aljwari, Bachelor degree in computer
science, working at Umm Al Qura University, living at
Al-Qunfudhah, Mecca, Saudi Arabia.

