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Summary 
There are many possible ways to configure database management 
systems (DBMSs) have challenging to manage and set.The 
problem increased in large-scale deployments with thousands or 
millions of individual DBMS that each have their setting 
requirements. Recent research has explored using machine 
learning-based (ML) agents to overcome this problem's automated 
tuning of DBMSs. These agents extract performance metrics and 
behavioral information from the DBMS and then train models with 
this data to select tuning actions that they predict will have the 
most benefit. This paper discusses two engineering approaches for 
integrating ML agents in a DBMS. The first is to build an external 
tuning controller that treats the DBMS as a black box. The second 
is to incorporate the ML agents natively in the DBMS's 
architecture. 
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1. Introduction 

A-Tuning a DBMS is an essential part of any 
database application installation. These tuning aims to 
improve a DBMS's operations based on some function (e.g., 
faster execution, lower costs, better availability). Modern 
DBMSs provide Application Programming Interfaces 
(APIs) that allow database administrators (DBAs) to control 
their runtime execution and storage operations:(1) physical 
design, (2) knob configuration, (1) hardware resource 
allocation, and (4) query plan hints. The Physical design 
changes to the database's physical representation and data 
structures. The knob configuration is optimizations that 
affect the DBMS's behavior. Resource allocations 
determine how the DBMS uses its available hardware to 
store data and execute queries; the DBA can use either 
provision new resources or redistribute existing resources. 
Lastly, query plan tuning hints are directives that force the 
DBMS's optimizer to make decisions for individual queries. 
In the 1970s, the efforts were building self-adaptive systems 
[5]. These were primarily tools based on physical database 
design. In the 1990s, the database community transformed 
into self-tuning systems [12]. Most self-tuning systems 
targeted automated physical design [2].  

The current research trend is using machine learning 
(ML) to devise learned methods for automated DBMS 

tuning. The newer approaches train models using data 
collected about the DBMS's runtime behavior under various 
execution scenarios and configurations. The agent observes 
the effects of the deployed action and integrates the new 
data into the models to improve their efficacy for future 
decision-making.  
There are two techniques developers can integrate ML-
based tuning methods for DBMSs. The first technique is to 
use external agents that observe and manipulate a DBMS 
through standard APIs, While the second technique is to 
integrate internal components inside the DBMS. 

This research discusses the trade-offs between 
implementing ML-based tuning agents outside of the 
DBMS versus designing a new DBMS around automation. 
We start in Section background with an overview of how 
DBMS tuning algorithms work. Next, we describe how to 
use ML-based agents to tune systems automatically. Then 
we compare the benefits of the approaches and discuss their 
challenges and problems. Finally, we conclude with an 
overview of two DBMS projects [1] using ML for 
automated tuning. The first project is OtterTune [5], an 
external tuning service for existing DBMSs, While The 
second project is a new self-driving DBMS called 
NoisePage [1] designed to be completely autonomous. 

2. Background 

Previous researchers have studied and devised 
methods for automatically optimizing DBMSs.  A large 
group of previous work includes theoretical and applied 
research [14].Before the 2010s, the methodologies for 
automated DBMS tuning were either heuristic- or cost-
based optimization algorithms.ML is a large field of study 
that includes many disciplines and applies to many facets of 
DBMSs. We discussion to the Effects of integrating ML in 
DBMSs for tuning in either existing or new systems. 
 The most used approach for automated DBMS tuning is 
heuristic algorithms. While the other approach for DBMS 
tuning is to use cost-based algorithms that 
programmatically search for improvements to the DBMSs. 
The Previous work in the cost-based algorithm has 
evaluated several search techniques, including greedy 
search [2], branch-and-bound search [14, 8], local search 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023 

 

165

 

[13], and genetic algorithms [8].The most notable 
application of this optimization was Microsoft's Auto 
Admin application use of SQL Server's built-in cost models. 

3. Automated Tuning with Machine Learning 

ML-based agents for automated DBMS tuning use the 
algorithms dependent on models to select actions that 
improve the system's target. The agent extracts patterns and 
inferences from the DBMS's past behavior to predict the 
expected behavior in the future and learn how to apply it to 
new actions.  The agent selects an action that it believes will 
provide the most benefit to its target. 

Agents build their models from training data from 
the DBMS and its environment. And the type of data that an 
agent collects from the DBMS depends on its action domain.   
Many agents objective a specific sub-system in the DBMS, 
and thus they need training data related to these parts of the 
system. How an agent acquires this data depends on 
whether it trains its models offline or online. 
Note that offline versus online approaches are not mutually 
exclusive, and a DBMS can use them together.ML methods 
had divided into three broad categories: There are existing 
DBMS tuning agents that use either one class of algorithms 
or some combination. We now describe these approaches in 
the context of DBMS tuning: (1) supervised, (2) 
unsupervised, and (3) reinforcement learning. 
 
a) Supervised Machine Learning: 
The agent builds models from training data that contains 
both the input and expected output (i.e., labels). The goal is 
for the models to learn how to produce the correct answer 
for new inputs. This approach is helpful for problems where 
the outcome of an action is immediately observable. The 
training data input (e.g., type, predicates, input data sizes) 
and the output is the cardinality that the DBMS observed 
when executing the query. The objective of this agent is to 
minimize the difference between the predicted and actual 
cardinalities. Supervised learning has also been applied to 
tune other parts of a DBMS, including performance 
modeling [4]. 
 
b) Unsupervised Machine Learning: 
With this approach, the agent's training data only contains 
input values and not the expected output. The agent doesn't 
need to know what "correct" values are to figure out what 
values do not look like the correct values .It is up to the 
agent to infer whether the output from the models is correct 
or not. 
 
c) Reinforcement Machine Learning: 
Lastly, reinforcement learning (RL) is like unsupervised 
ML in that there is no labeled training data. The agent trains 
a policy model that selects actions to improve the current 

environment's target objective function. RL approaches, in 
general, do not make assumptions about priors, and the 
models are derived only from the agent's observations. That 
is useful for problems where the benefit or effect of an 
action is not immediately known. For example, the agent 
may add an index to improve query performance, but the 
DBMS will take several minutes or even hours to build it. 
Given the general-purpose nature of RL, it is one of the 
most active areas of DBMS tuning research in the late 2010s. 
Researchers have applied RL for query optimization [7], 
index selection [10], partitioning [3, 6]. 

We next discuss how to integrate agents that use the 
above ML approaches into DBMSs to enable them to 
support autonomous tuning and optimization features. We 
begin with examining strategies for running agents outside 
of the DBMS in Section 3.1. Then in Section 3.2, we 
consider the implications of integrating the agents directly 
inside the DBMS. We first present the approach for each of 
these strategies and then list some of the challenges one 
must overcome. 
 

3.1 External Agents: 

An external agent tunes a DBMS without requiring 
specialized ML components running inside the system. The 
goal is to reuse the DBMS's existing APIs and environment 
data collection infrastructure without modifying the DBMS 
itself. Ideally, a developer can create the agent for a general-
purpose such that one can reuse its backend ML component 
across multiple DBMSs. An agent receives objective 
function data directly from the DBMS or additional third-
party monitoring tools.  

Agents may also need an additional controller running 
on the same machine as the DBMS or within the same 
administrative domain [11]. This controller can install 
changes that are not accessible through the DBMS's APIs. 
The controller may also need to restart the DBMS because 
many systems cannot apply changes until restart. 
 
Challenges: 
The challenges did not design in tuning DBMS for 
autonomous operation. Foremost is that almost every major 
DBMS that we have examined does not support making 
changes to the system's configuration without periods of 
unavailability, either due to restarts or blocking execution 
[9].  
Requiring the DBMS to halt execution to apply a change 
makes it difficult for agents to explore configurations and 
increases its time to collect training data.  
The second issue is that an agent can only collect 
performance metrics that the system exposes. 
Mean that if there is additional information that the agent 
needs, then it is not immediately available. The other issue 
is that data is often overabundance, making it challenging 
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to separate signals from the noise [11]. DBMSs also do not 
expose their underlying hardware to reuse training data 
across operating environments. 

3.2 Internal Agents: 

An alternative to treating the DBMS like a black box 
and tuning it with an external agent is to design its 
architecture to support autonomous operation natively. The 
DBMS supports one or more agents running inside the 
system with this approach. These agents collect their 
training data, apply changes to the DBMS, and then observe 
how they affect the objective. The system does not require 
guidance or approval from a human for any of these steps. 
The benefit of running agents inside of the DBMS is that it 
exposes more information about the system's runtime 
behavior and can potentially enable more low-level control 
of the DBMS than what is possible with an external agent. 
Most of the proposed ML tuning agents available today do 
design to extend or replace components in existing DBMSs. 
 
Challenges: 

The biggest problem with replacing a DBMS's existing 
components with new ML-based implementations is hard to 
capture their dependencies. Consider a tuning agent that 
controls the DBMS's memory allocations. Suppose the 
agent initially assigns a small amount of memory for query 
result caching and a large amount to the buffer pool. 
Another index tuning agent running inside the same DBMS 
then chooses to build an index because memory 
pressure in the buffer pool is low. But then the memory 
agent decides to increase the result cache size and decrease 
the buffer pool size. There are three ways to this problem, 
but each has its own set of issues. The first is to use a single 
centralized agent rather than separate agents. That is 
potentially the most practical but dramatically increases the 
complexity of the models, which requires significantly 
more training data.  

The second is to have each agent provide a performance 
guarantee about its changes in the DBMS. The agents give 
this information to a central coordinator in charge of 
resource allocations. The last approach is a decentralized 
architecture where agents communicate and coordinate. 
One of the most expensive parts of these agents is when they 
build their models from the training data. 

 

4.  OtterTUne - Automated Knob TUning 
Service for Existing DBMSs 

OtterTune is an external configuration tuning service that 
works with any DBMS [11, 5].  
As shown in Figure1, Otter Tune's architecture consists of 
a client-side controller and a server-side tuning manager. 

The controller is a conduit between the target DBMS and 
the tuning manager. It contains DBMS-specific code for 
collecting runtime information from the target DBMS (e.g., 
executing SQL commands) and installs configurations 
recommended by the tuning manager. The controller 
updates the DBMS's configuration file on disk and then 
restarts using the appropriate administrative tool.  

The tuning manager updates its repository and internal 
ML models with the information provided by the controller 
and then recommends a new configuration for the user to 
try. The process continues even the user is satisfied with the 
improvements. 

4.1 Machine Learning Pipeline 

Otter Tune's ML pipeline uses a combination of 
supervised and unsupervised methods. It processes, 
analyzes, and builds models from the data in its repository. 
The Workload Characterization and Knob Identification 
modules execute a background task that periodically 
updates models as new data becomes available in the 
storage. The tuning manager uses these models to generate 
new knob configurations for the target DBMS. OtterTune's 
ML pipeline has three modules: 
Workload Characterization: 
This first component compresses all the past metric data in 
the repository into a smaller set of metrics that capture the 
distinguishing characteristics for different workloads. 
Knob Identification: 
The next component analyzes all past observations in the 
repository to determine which knobs impact the DBMS's 
performance for different workloads. 
Automated Tuner: 
In the last step, the tuner analyzes the results it has collected 
so far in the tuning session to decide which configuration to 
recommend next. 

Fig 1: OtterTune Architecture 
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The controller connects to the target DBMS, then 
collects its data, transforms the collected information into a 
JSON document, and sends it to the server-side tuning 
manager; then it does the following: 
Sends the information to the tuning manager. 
Controller gets a token from the tuning manager. 
Uses this token to check the status of the tuning job. 
Gets the recommended configuration when the job finishes, 
and then the agent installs it in the DBMS. 

 

5. NoisePage – (A Self-Driving) DBMS 
Architecture 

NoisePage is a new DBMS that we are developing to 
be self-driving [1]. The DBMS's control agent runs in a 
continuous loop where it selects actions to deploy that it 
estimates will improve the target objective. That means that 
the system can tune and optimize itself automatically 
without any human intervention other than selecting the 
target function on start-up.  
 This (1) improves data collection efficiency and (2) reduces 
model over-fitting. The DBMS then combines this offline 
data with data collected online during query execution to 
improve accuracy. 

5.1 Machine Learning Pipeline 

We next provide an overview of Noise Page's self-
driving pipeline. As shown in Figure2 illustrates the overall 
architecture of the DBMS with its modeling and planning 
modules. 

 

 

Fig 2: overall architecture of the DBMS with its modeling and planning 
modules. 

Modeling: This first module is responsible for training 
prediction models using data that the monitors collect from 
observing its runtime process, such as forecast models that 
predict the application's future workload and database state. 
Forecasting is necessary so that DBMS can prepare itself 
accordingly, much like a self-driving car has to indicate the 
road condition up ahead.  

Planning: In the second module, the DBMS uses the models 
generated in the previous step to select actions that provide 
the best reward given the system's current state.  
Deployment: For a given action selected in the planning 
module, the next step is for the DBMS to deploy it. 
The DBMS's planning modules use the data it collects 
during this phase to update their models and improve their 
decision-making. 

6. Conclusion 

This paper surveyed the approaches for adding 
automatic tuning agents based on ML to DBMSs. We 
discussed the high-level differences of external versus 
internal agents and the different challenges in these 
approaches. We then discussed two examples of 
architectures: OtterTune [5] and NoisePage [1]. However, 
more research in both systems and ML before achieving 
fully autonomous means that self-driving DBMSs. We want 
to make one final point: we believe autonomous DBMSs 
will not supplant DBAs. We instead envision these systems 
will emancipate them from low-level tuning and allow them 
to pursue higher- tasks, such as database design and 
development. 
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