References
- Penney, D. D., & Chen, L. (2019). A survey of machine learning applied to computer architecture design. arXiv preprint arXiv:1909.12373.
- Wu, N., & Xie, Y. (2022). A survey of machine learning for computer architecture and systems. ACM Computing Surveys (CSUR), 55(3), 1-39. https://doi.org/10.1145/3494523
- Nemirovsky, D., Arkose, T., Markovic, N., Nemirovsky, M., Unsal, O., Cristal, A., & Valero, M. (2018). A general guide to applying machine learning to computer architecture. Supercomputing Frontiers and Innovations, 5(1), 95-115.
- N, S. T. (2020R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- S. Sun, Z. Cao, H. Zhu and J. Zhao, "A Survey of Optimization Methods From a Machine Learning Perspective," in IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3668-3681, Aug. 2020, doi: 10.1109/TCYB.2019.2950779.
- Dumas II, J. D. (2018). Computer architecture: Fundamentals and principles of computer design. CRC Press.
- Himani Maheshwari, Pooja Goswami, Isha Rana, (2019). A Comparative Study of Different Machine Learning Tools. International Journal of Computer Sciences and Engineering, 7(4), 184-190. https://doi.org/10.26438/ijcse/v7i4.184190
- Bennett, K. P., & Parrado-Hernandez, E. (2006). The interplay of optimization and machine learning research. The Journal of Machine Learning Research, 7, 1265-1281.
- algorithm for static task scheduling in cloud. In Advances in Big Data and Cloud Computing (pp. 61-70). Springer, Singapore.
- Chirkin, A. M., Belloum, A. S., Kovalchuk, S. V., Makkes, M. X., Melnik, M. A., Visheratin, A. A., & Nasonov, D. A. (2017). Execution time estimation for workflow scheduling. Future generation computer systems, 75, 376-387. https://doi.org/10.1016/j.future.2017.01.011
- Sun, S., Cao, Z., Zhu, H., & Zhao, J. (2019). A survey of optimization methods from a machine learning perspective. IEEE transactions on cybernetics, 50(8), 3668-3681. https://doi.org/10.1109/TCYB.2019.2950779
- Tanash, M., Dunn, B., Andresen, D., Hsu, W., Yang, H., & Okanlawon, A. (2019). Improving HPC system performance by predicting job resources via supervised machine learning. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) (pp. 1-8).
- Darwish, N. R., Mohamed, A. A., & Zohdy, B. S. (2016). Applying swarm optimization techniques to calculate execution time for software modules. IJARAI, 5(3), 12-17.
- https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
- https://pyswarms.readthedocs.io/en/development/examples/feature_subset_selection.html
- Jovanovic and Irena,"Software TestingMethods and Techniques," May26, 2008.