DOI QR코드

DOI QR Code

A Study on the Instructional Model in Elementary School for Data Science Education using Public Data

공공데이터 활용 데이터사이언스 교육을 위한 초등학교 교수학습모형 개발 연구

  • Seungki Shin (Department of Computer Education, Seoul National University of Education)
  • 신승기 (서울교육대학교 컴퓨터교육과)
  • Received : 2023.01.08
  • Accepted : 2023.01.20
  • Published : 2023.02.28

Abstract

This study aims to develop an instructional model of data science education that considers learners' cognitive development stages in elementary schools and to present strategies and processes to collect the data for problem-solving using public data. The instructional model for data science education is based on the problem-solving process linked to computational thinking derived from the life cycle of data science based on Agency, Abstraction, and Modeling, the framework of cognitive learning environment for artificial intelligence education. Social influences are considered at all stages of the instructional process, and collection and discovery through data identification have been strengthened. In particular, the instructional model was composed of activities to discover problems, collect data to solve problems and visualize data analysis results while performing the problem-solving process.

본 연구에서는 초등학교에서 학습자의 인지적 발달단계를 고려한 데이터사이언스 교육의 교수학습모형을 개발하는데 목표를 두고 있으며, 공공데이터를 활용하여 데이터를 수집하고 문제해결에 필요한 데이터를 찾기 위한 전략과 과정을 제시하고자 하였다. 데이터사이언스 교육을 위한 교수학습모형은 인공지능 교육을 위한 인지적 학습환경의 프레임워크인 Agency(인지적학습보조), Abstraction(추상화), Modeling(알고리즘구현)을 기반으로 데이터사이언스 생명주기에서 도출된 컴퓨팅사고력과 연계된 문제해결의 과정을 토대로 교수학습모형이 구성되었다. 교수학습과정의 모든 단계에서 사회적 영향을 고려하며, 데이터 식별을 통한 수집과 발견이 강화되었다. 특히, 일상에서의 다양한 문제를 해결하기 위해 문제를 발견하고 이를 해결하기 위한 데이터를 수집하며 문제해결의 과정을 수행하면서 데이터 분석결과를 시각화하는 활동으로 교수학습모형이 구성되었다.

Keywords

Acknowledgement

본 연구는 서울교육대학교 교내연구비 지원을 통해 수행된 연구임.

References

  1. Koo, D., & Kim, D. (2020), Data science education program based on problem solving learning, The Journal of Korea Elementary Education. 31, 203-215.
  2. Computer Science Teachers Association (CSTA) and the International Society for Technology in Education (ISTE) (2011), Computational Thinking Teacher Resources. Second Edition, Retrieved from https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/472.11CTTeacherResources_2ed.pdf
  3. ICPSR (2020), Guide to Social Science Data Preparation and Archiving. 6th edition, Retrieved from https://www.icpsr.umich.edu/files/deposit/dataprep.pdf
  4. ICPSR (2023), About ICPSR, Retrieved from https://www.icpsr.umich.edu/web/pages/about/
  5. Kadijevich, D. M. (2018), Cultivating computational thinking through data practice. In Open Conference on Computers in Education, Springer, 24-33.
  6. Kim, B., & Shin, S. (2023), Designing a data science and curriculum convergence class to develop computational thinking, The Koran Association of Information Education Research Journal, 1(1), 177-182.
  7. Kim, Y. (2020), The effects of PBL-based data science education classes using app inventor on elementary student computational thinking and creativity improvement. Journal of The Korean Association of Information Education, 24(6), pp. 512-562.
  8. Korean Government (2020), AI era, direction of educational policy and core tasks. Retrieved fromhttps://www.korea.kr/archive/expDocView.do?docId=39237
  9. Microsoft (2022), The team data science process lifecycle. Retrieved fromhttps://learn.microsoft.com/en-us/azure/architecture/data-science-process/lifecycle
  10. Ministry of Education (2015), Software education instructional guidance.
  11. Ministry of Education (2015), Informatics curriculum. #2015-74 (Annex 10).
  12. Ministry of Education (2022), 2022 revised curriculum. #2022-33 (Annex 1).
  13. Ministry of Education (2022), 2022 revised informatics curriculum. #2022-33 (Annex 10).
  14. Ministry of Education (2022), Comprehensive digital talent development plan. Press Release.Retrieved fromhttps://www.moe.go.kr/boardCnts/viewRenew.do?boardID=72770&boardSeq=92584&lev=0&searchType=null&statusYN=W&page=4&s=moe&m=0315&opType=N
  15. Ministry of Safety and Public Administration (2013), Create jobs by loosening the shackles of public data!. Retrieved fromhttps://mois.go.kr/frt/bbs/type010/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000008&nttId=30053
  16. Ministry of Safety and Public Administration (2013), Major work plan of the Ministry of Safety and Public Administration in 2013. Retrieved fromhttps://www.korea.kr/archive/expDocView.do?docId=33763
  17. Park, H. (2022), Degree programs in data science at the school of information in the states. Journal of Korean Library and Information Science Society, 53(2), 305-332. https://doi.org/10.16981/KLISS.53.2.202206.305
  18. Park, P., & Shin, S. (2019), A Study on the Instructional System and Curriculum Design to Evolve the Software Education in Elementary School, Journal of The Korean Association of Information Education, 23(3), 273-282. https://doi.org/10.14352/jkaie.2019.23.3.273
  19. Seo, S., & Kim, C. (2021), Analysis of understanding of prospective teachers' computational thinking on artificial intelligence education. Journal of The Korean Association of Information Education. 25(1), 123-134. https://doi.org/10.14352/jkaie.2021.25.1.123
  20. Shin, S. (2019), Designing the instructional framework and cognitive learning environment for artificial intelligence education through computational thinking. Journal of The Korean Association of Information Education, 23(6), 639-653. https://doi.org/10.14352/jkaie.2019.23.6.639
  21. Shin, S. (2020), Designing the framework of evaluation on learner's cognitive skill for artificial intelligence education through computational thinking, Journal of The Korean Association of Information Education, 24(1), 59-69. https://doi.org/10.14352/jkaie.2020.24.1.59
  22. Shin, S. (2021), A study to design the instructional contents for national curriculum of computer education in elementary school. Journal of The Korean Association of Information Education, 25(1), pp. 13-31. https://doi.org/10.14352/jkaie.2021.25.1.13
  23. Shin, S. (2022), A study on educational data mining for public data portal through topic modeling method with latent dirichlet allocation. Journal of The Korean Association of Information Education 26(5), 439-448. https://doi.org/10.14352/jkaie.2022.26.5.439
  24. Shin, S., & Bae, Y. (2015), A study on the hierarchical instructional system design of software education by school system, Journal of The Korean Association of Information Education, 19(4), 533-544. https://doi.org/10.14352/jkaie.2015.19.4.533
  25. Stodden, V. (2020), The data science life cycle: a disciplined approach to advancing data science as a science. Communications of the ACM, 63(7), 58-66. https://doi.org/10.1145/3360646
  26. Wing, J. M. (2019), The data life cycle. Harvard Data Science Review, 1(1), 6.