DOI QR코드

DOI QR Code

Analysis of AI Ethics Research Trends Using Text Mining

텍스트 마이닝을 활용한 인공지능 윤리 연구 동향 분석

  • Miyoung Kim (Gwangju National University of Education majoring in AI convergence education) ;
  • Sunju Park (Dept. of Computer Science Education Gwangju National University of Education)
  • 김미영 (광주교육대학교 AI 융합교육전공) ;
  • 박선주 (광주교육대학교 컴퓨터교육과)
  • Received : 2022.12.23
  • Accepted : 2023.01.13
  • Published : 2023.02.28

Abstract

The autonomy of artificial intelligence gives it justification that artificial intelligence should be an existence with ethics, not just technology. This can be confirmed through the fact that as artificial intelligence technology develops, various problems regarding artificial intelligence ethics are raised. Therefore, this study grasped the trend of domestic artificial intelligence ethics research through quantitative research on papers published in domestic academic papers and dissertations, and then interpreted the meaning of domestic artificial intelligence ethics research through word cloud visualization, topic modeling, and network analysis. As a result, it can be seen that domestic artificial intelligence ethics research is still in the beginning stage, and most of the research has been conducted in the direction of suggesting a kind of solution. In addition, future AI ethics research is expected to be conducted in the direction of presenting various regulations according to social changes. This study is meaningful as an attempt to suggest implications for the future direction of artificial intelligence ethics research through these results.

인공지능이 가지는 자율성은 인공지능이 단순한 기술이 아닌 윤리를 지닌 존재이어야 하는 당위성을 부여한다. 이는 인공지능 기술이 발전할수록 인공지능 윤리에 대한 다양한 문제가 제기되는 것을 통해 확인할 수 있다. 이에 본 연구는 국내 학위 논문 및 학술지에 게재된 논문을 대상으로 양적 연구를 통해 국내 인공지능 윤리 연구의 경향성을 파악한 후, 워드 클라우드 시각화, 토픽 모델링, 네트워크 분석을 통해 국내 인공지능 윤리 연구의 의미를 해석하였다. 그 결과 국내 인공지능 윤리 연구는 아직 시작 단계이며, 대부분의 연구가 일종의 해결책을 제시하는 방향으로 진행되었음을 알 수 있었다. 또한, 앞으로의 인공지능 윤리 연구는 사회 변화에 맞게 다양한 규제를 제시하는 방향으로 진행될 것으로 예상한다. 본 연구는 이러한 결과를 통해서 앞으로의 인공지능 윤리 연구 방향에 대한 시사점을 제안하고자 하는 시도로서 의의가 있다.

Keywords

References

  1. Han, J. Y. & Shin, Y. J. (2020), Analysis of research trends related to artificial intelligence education: Keyword network Crack Analysis, Artificial Intelligence Research Paper, 1(2), 20-33. 
  2. Han, S. Y. & Kim, T. J. (2022), Analysis of domestic artificial intelligence education research trends: Using LDA techniques Focusing on the analysis of useful keywords and topics, a learner-centered curriculum education study, 281-294 
  3. Jeong, D. B., Yoo, H. S. & Moon, H. J. (2022), A study on the major issues of artificial intelligence through keyword analysis: Focusing on KCI-listed academic journals in the field of social science, Journal of the Korean Society of Contents, 22(7), 1-9. 
  4. Jeong, D. H. & Joo, H. S. (2018), Method of deriving interdisciplinary convergence technology through content analysis based on topic modeling, Journal of Information Management, 35(3), 77-100. 
  5. Kim, M. H. & Kim, T. J. (2021), Topic analysis of successive agricultural managers using news big data. Journal of the Korean Digital Content Society, 22(7), 1143-1152.  https://doi.org/10.9728/dcs.2021.22.7.1143
  6. Kim, M. J. (2017), The need for AI ethics and domestic and international trends, Information and communication, 34(10), 45-54. 
  7. Kim, S. A. (2021), Direction and tasks of technical education according to the analysis of research trends related to artificial intelligence education in elementary and secondary schools using topic modeling, Journal of the Korean Society of Technology Education, 106-124 
  8. Kim, Y. H. (2021), Analysis of research topics related to artificial intelligence education: Focusing on network text analysis, Education innovation research, 197-217 
  9. Kim, Y. H., & Kim, H. Y. (2021), Analyze trends in moral artificial intelligence research using topic modeling and keyword network analysis, Moral Education Research 33(4), 115-141.  https://doi.org/10.17715/jme.2021.12.33.4.115
  10. Lim, M. K. (2021), Systematic literature review on the study of artificial intelligence ethics, Journal of ethics, 135(1), 47-66. 
  11. Min, Y. H., Kim, J. Y., & Park, O. N. (2021), Topic modeling and keyword network analysis Analysis of trends in cultural content research, Social Science Research, 32(2), 113-131.  https://doi.org/10.16881/jss.2021.04.32.2.113
  12. Park, G. Y. (2019), Introduction to network analysis techniques using networkx. 
  13. Park, J. H., & Song, M. (2013), Analysis of domestic literature informatics research trends using topic modeling, Journal of Information Management, 30(1), 7-32.  https://doi.org/10.3743/KOSIM.2013.30.1.007
  14. Park, J. H. (2021), Analysis of domestic artificial intelligence education research trends. Education Research, 3(2), 51-62.  https://doi.org/10.36237/koedus.3.2.51
  15. Park, Y. H. (2022), DQ Digital Intelligence. GimmYoungSa Press. 
  16. Seo, H. J., & Kwon, S. A. (2019), Analysis of research published in domestic journals under the theme of education and artificial intelligence (1985-2018): Application of language network analysis, Artistic Humanities Social Convergence Multimedia Paper, 9(11), 209-217. 
  17. Yoo, S. J., & Jang, Y. J. (2021), A study on the ethics of artificial intelligence among college students through text mining, Journal of the Society of Information Education, 25(6), 947-960.  https://doi.org/10.14352/jkaie.2021.25.6.947
  18. Chosun Ilbo. The worst crisis Facebook, changed its name to 'Meta' and 'Image Laundry'. https://www.chosun.com/economy/tech_it/2021/10/29/O2EZ5NSXT5HOTAD5IRYTS5FQSM/ 
  19. Korea Information and Communication Technology Association Information and Communication Terminology Dictionary, Text mining. http://terms.tta.or.kr/dictionary/dictionaryView.do?word_seq=057929-2 
  20. Ministry of Education, Artificial intelligence, use it safely in the field of education, https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=294&lev=0&statusYN=W&s=moe&m=020402&opType=N&boardSeq=92297