DOI QR코드

DOI QR Code

An Analysis of Domestic and International Research Trends onAI-based Personalized Learning through TF-IDF and Topic Modeling

TF-IDF 분석과 토픽 모델링을 활용한 AI 기반 개별화 학습 국내외 연구동향 분석

  • 김세영 (서강대학교 교수학습센터)
  • Received : 2023.06.28
  • Accepted : 2023.07.25
  • Published : 2023.08.31

Abstract

This study analyzed the domestic and international research trends of AI-based personalized learning from 2016 to April 2023 in order to propose research directions for the future fielding of AI-based personalized learning. For this purpose, TF-IDF analysis and LDA-based topic modeling were conducted on the titles and abstracts of 56 domestic KCI papers and 46 international SSCI papers. As a result, first, the TF-IDF analysis of domestic research showed that TFs were 'learner', 'system', 'English', 'platform', and 'development', and the TF-IDF criteria were 'English', 'system', 'Mathematics', 'chatbot', and 'platform'. Second, as a result of LDA-based topic modeling for domestic research, five major topics were derived. Third, the TF-IDF analysis of international studies showed that the TFs were 'learner', 'system', 'data', 'technology, and 'educational', and the TF-IDF criteria were 'chatbot', 'collaborative', 'technology', 'gamification', and 'system'. Fourth, LDA-based topic modeling of international studies resulted in five major topics.

본 연구는 향후 AI 기반 개별화 학습의 연구 방향을 제안하고자 2016년부터 2023년 4월까지 국내외 연구 동향을 분석하였다. 이를 위해 국내 56개의 KCI 논문, 국외 46개의 SSCI 논문 제목과 초록을 대상으로 TF-IDF 분석과 LDA 기반 토픽 모델링을 실시하였다. 연구결과, 첫째, 국내 연구에 대한 TF-IDF 분석에서 TF는 '학습자', '시스템', '영어', '플랫폼', '개발' 순으로 나타났으며 TF-IDF 기준에서는 '영어', '시스템', '수학', ' 봇', '플랫폼'이 상위권에 위치해 있었다. 둘째, 국내 연구에 대한 LDA 기반 토픽 모델링 결과 5개의 주요 토픽이 도출되었다. 셋째, 국외 연구에 대한 TF-IDF 분석 결과, TF는 'learner', 'system', 'data', 'technology', 'educational' 순으로 나타났으며 TF-IDF 기준에서는 'chatbot', 'collaborative', 'technology', 'gamification', 'system' 이 상위권에 위치해 있었다. 넷째, 국외 연구에 대한 LDA 기반 토픽 모델링 결과 5개의 주요 토픽이 도출되었다.

Keywords

References

  1. Ministry of Education (2023), Digital-driven education reform.
  2. Guan, C., Mou, J., & Jiang, Z. (2020), Artificial intelligence innovation in education: a twenty-year data-driven historical analysis, International Journal of Innovation Studies, 4, 134-147. https://doi.org/10.1016/j.ijis.2020.09.001
  3. Lim, K. Y., Lim, J. Y., & Jin, M. (2021), A systematic literature review of technology-based personalized learning: research from 2011 to 2020 in Korea, Journal of Educational Technology, 37(3), 525-559. https://doi.org/10.17232/KSET.37.3.525
  4. Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019), Trends and development in technology-enhanced adaptive/personalized learning: a systematic review of journal publications from 2007 to 2017, Computers & Education, 140, 1-16. https://doi.org/10.1016/j.compedu.2019.103599
  5. Kim, H., & Shin, A. (2022), Discussion of technology-based personalized learning: focusing on concept and implementation in domestic and foreign literature, Korean Educational Research Journal, 43(2), 139-179. https://doi.org/10.55152/KERJ.43.2.139
  6. KERIS (2022), Domestic and international EdTech promotion policies and governance.
  7. Batty, R., Wong, A., Florescu, A., & Sharples, M. (2019), EdTech testbeds: models for improving evidence, nesta.
  8. Joo, J., Kim, B., Kim, A., Lim, E., & Lim, S. (2022), Possibilities and challenges of individually customized AI utilization education, Seoul Education Research & Information Institute.
  9. Jung, H., & Hong, H.-J. (2021), An analysis on customized education research trends in the era of the 4th industrial revolution through text mining, The Korean Journal of Educational Methodology Studies, 33(3), 433-454.
  10. Wu, J. Y., Hsiao, Y. C., & Nian, M. W. (2020), Using supervised machine learning on large-scale online forums to classify course-related Facebook messages in predicting learning achievement within the personal learning environment, Interactive Learning Environments, 28(1), 65-80. https://doi.org/10.1080/10494820.2018.1515085
  11. Ouyang, F., & Jiao, P. (2021), Artificial intelligence in education: the three paradigms, Computers and Education: Artificial Intelligence, 2, 1-6. https://doi.org/10.1016/j.caeai.2021.100020
  12. Choi, S. (2021), Artificial intelligence in education: a literature review on education using artificial intelligence, The Journal of Korean Association of Computer Education, 24(3), 11-21.
  13. Tetzlaff, L., Schmiedek, F., & Brod, G. (2021), Developing personalized education: a dynamic framework, Educational Psychology Review, 33, 863-882. https://doi.org/10.1007/s10648-020-09570-w
  14. Vandewaetere, M., & Clarebout, G. (2014), Advanced technologies for personalized learning, instruction, and performance. In M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop. (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 425-437).
  15. Montebello, M. (2018), AI injected e-learning: the future of online education, Springer International.
  16. Choi, J., & Chung, H. (2022), Trends in gifted education using topic modeling and semantic network analysis, Korean Journal of Educational Research, 60(4), 1-28. https://doi.org/10.30916/KERA.60.4.1
  17. Park, J., Jung, S. H., Park, H., & Lim, K. Y. (2022), An analysis of research trends on personalized learning: using TF-IDF, LDA based text mining, The Korean Journal of Educational Methodology Studies, 34(4), 711-739.
  18. Kim, Y. (2021), Do it! learn R text mining easily, Seoul; EasysPublishing.
  19. Cho, E., Park, J., & Park, S. (2020), Perceptions of self-regulated learning and self-directed learning in layman utilizing social big data, CNU Journal of Educational Studies, 41(2), 343-369. https://doi.org/10.18612/CNUJES.2020.41.2.343
  20. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003), Latent dirichlet allocation, Journal of Machine Learning Research, 3, 993-1022.
  21. Jang, E., Baek, Y., Chung, H. (2023), Emerging trends amongst adolescents from immigrant backgrounds using topic modeling and semantic network analysis, Studies on Korean Youth, 34(1), 91-122. https://doi.org/10.14816/SKY.2023.34.1.91
  22. Kim, H., & Mun, S. (2018), Exploring the educational use of artificial intelligence based on R mapping-focusing on foreign publication analysis results, Journal of The Korean Association of Information Education, 24(4), 313-325. https://doi.org/10.14352/jkaie.2020.24.4.313
  23. Jung, Y., & Kim, H. (2021), Analysis of overseas research trends related to artificial intelligence (AI) in elementary, middle and high school education, Journal of Korean Library and Information Science Society, 52(3), 313-334. https://doi.org/10.16981/KLISS.52.3.202109.313
  24. Ministry of Education (2020), Information education master plan (draft).
  25. KICE (2020), Exploring the use of artificial intelligence (AI) in schooling.
  26. Baek, Y. (2020), Text mining with R, Paju; Hanul.
  27. Lee, G., & Ha, M. (2020), The present and future of AI-based automated evaluation: a literature review on descriptive assessment and other side, Journal of Educational Technology, 36(2), 353-382. https://doi.org/10.17232/KSET.36.2.353
  28. Lee, H., So, H., & Jin, L. (2020), Analysis of the characteristics and design level of educational artificial intelligence applications, The Journal of Educational Information and Media, 26(3), 647-670. https://doi.org/10.15833/KAFEIAM.26.3.647
  29. Park, M. H., & Park, C. Y. (2022), Comparison of the cases based on the usage of artificial intelligence in the EdTech industry-focusing on IBM Watson Talent and Riiid R.Inside, Journal of Educational Technology, 38(2), 333-368.
  30. Park, M. (2020), Applicatons and possibilities of Artificial Intelligence in Mathematics education, Communications of Mathematical Education, 34(4), 545-561. https://doi.org/10.7468/JKSMEE.2020.34.4.545
  31. Park, M. (2020), The trends of using Artificial Intelligence in Mathematics education, The Journal of Korean Elementary Education, 31, Supplement, 91-102.
  32. Shin, D. (2020), Artificial Intelligence in primary and secondary education: a systematic review, Journal of Educational Research in Mathematics, 30(3), 531-552. https://doi.org/10.29275/jerm.2020.08.30.3.531
  33. Lee, A., & Kim, K. (2022), Development and application of AI-based Hangeul learning program for learners with dyslexia, Journal of Digital Contents Society, 23(5), 781-791. https://doi.org/10.9728/dcs.2022.23.5.781
  34. Kim, B., Park, Y., Shin, E., & Lee, J. (2022), Impact of Artificial Intelligence-based adaptive learning program on students' academic performance: evidence from a randomized controlled trial in a Daegu middle school, Korea Review of Applied Economics, 24(4), 5-25.
  35. Kim, M. (2023). An analysis of LC/RC academic achievement and perception of students participating in TOEIC classes applying an Artificial Intelligence-based TOEIC program, The Journal of Learner-Centered Curriculum and Instruction, 23(1), 405-421. https://doi.org/10.22251/jlcci.2023.23.1.405
  36. Kim, M., & Yoo, Y. (2022), The effect of TOEIC classes applying Artificial Intelligence-based adaptive learning on academic achievement and influencing factors, The Journal of Learner-Centered Curriculum and Instruction, 22(23), 267-280. https://doi.org/10.22251/jlcci.2022.22.23.267
  37. Kim, S., Kim, W., Jang, Y., & Kim, H. (2021), Development of explainable AI-based learning support system, The Journal of Korean Association of Computer Education, 24(1), 107-115. https://doi.org/10.32431/KACE.2021.24.1.012
  38. Lee, J., Moon, K., Han, S., Lee, S., Kwon, H., Han, J., & Kim, G. (2021), Development and application of an AI-powered adaptive course recommender system in higher education: an example from K university, Journal of Educational Technology, 37(2), 267-307. https://doi.org/10.17232/KSET.37.2.267
  39. Jin, H., Shin, J., & Kim, G. (2021), Suggestion of AI elementary writing learning app service based on conversational chatbot character, Journal of Digital Contents Society, 22(4), 587-596. https://doi.org/10.9728/dcs.2021.22.4.587
  40. Lee, S., & Han, Y. S. (2022), Explore the usability of AIED assistants in Chinese pedagogy - focused on chatbot, smart speaker and ITS -, Studies of Chinese & Korean Humanities, 76, 89-114. https://doi.org/10.26528/kochih.2022.76.089
  41. Lee, S., & Kim, J. (2023), An analysis of the English teaching and learning Artificial Intelligence platforms, The SNU Journal of Educational Research, 32(1), 21-44. https://doi.org/10.54346/sjer.2023.32.1.21
  42. Jung, J., Lee, J., & Kim, H. (2022), A study on the development of AI chatbot for Korean language education using chatbot builder, Journal of the International Network for Korean Language and Culture, 19(3), 405-441. https://doi.org/10.15652/ink.2022.19.3.405
  43. Hwang, H. (2021), Development of chatbot for elementary social studies micro-learning, Social studies education, 60(3), 81-104. https://doi.org/10.37561/sse.2021.09.60.3.81
  44. Hwang, H. (2022), The application of map AI chatbot class for micro-learning in social studies. Social studies education, 61(2), 69-94. https://doi.org/10.37561/sse.2022.06.61.2.69
  45. Oh, D., & Hwang, H. (2022), Development and application of AI-based chatbot for place-based learning of global region: focusing on understanding cultural diversity, Journal of Education for International Understanding, 17(1), 59-91. https://doi.org/10.35179/jeiu.2022.17.1.59
  46. Lee, J., & Kim, M. (2018), A development of adaptive learning system considering learners' knowledge level, Journal of Knowledge Information Technology and Systems, 13(6), 727-735. https://doi.org/10.34163/jkits.2018.13.6.009
  47. Han, J., Jo, J., & Lim, H. (2018), Development of personalized learning course recommendation model for ITS, Journal of the Korea Convergence Society, 9(10), 21-28. https://doi.org/10.15207/JKCS.2018.9.10.021
  48. Jo, K., Park, J., Nam, B., Sim, C., & Choi, H. (2022), Responses of the AI Chatbots to erroneous utterances: AI Pengtalk and Speaking Class, The Journal of Education, 42(4), 179-195. https://doi.org/10.25020/je.2022.42.4.179
  49. Kim, M., Han, J., & Yoo, Y. (2023), A study on the effects and participant perception of classes applying Artificial Intelligence-based personalized learning, Journal of Education & Culture, 29(1), 137-159.
  50. Kim, S., Ha, O., & Go, E. (2023), Analysis on the perceptions on and need for AI-based adaptive learning : focusing on a case in a university, CNU Journal of Educational Studies, 44(1), 107-139. https://doi.org/10.18612/CNUJES.2023.44.1.107
  51. Seong, S., & Lee, S. (2021), Analyzing learners' and teachers' perceptions of AI PengTalk for English learning and the suggestions for its use, The Journal of Learner-Centered Curriculum and Instruction, 21(21), 915-935. https://doi.org/10.22251/jlcci.2021.21.21.915
  52. Shin, J., & Shon, J. (2021), Analysis of faculty perceptions and needs for the implementation of AI based adaptive learning in higher education, Journal of Digital Convergence, 19(10), 39-48. https://doi.org/10.14400/JDC.2021.19.10.039
  53. Hwang, G. J., & Tu, Y. F. (2021), Roles and research trends of artificial intelligence in mathematics education: a bibliometric mapping analysis and systematic review, Mathematics, 9(6), 1-19. https://doi.org/10.3390/math9060584
  54. Rodriguez, M. E., Guerrero-Roldan, A. E., Baneres, D., & Karadeniz, A. (2022), An intelligent nudging system to guide online learners, International Review of Research in Open and Distributed Learning, 23(1), 41-62. https://doi.org/10.19173/irrodl.v22i4.5407
  55. Lee, Y. F., Hwang, G. J., & Chen, P. Y. (2022), Impacts of an AI-based cha bot on college students' after-class review, academic performance, self-efficacy, learning attitude, and motivation, Educational technology research and development, 70(5), 1843-1865. https://doi.org/10.1007/s11423-022-10142-8
  56. Nguyen, A., Jarvela, S., Rose, C., Jarvenoja, H., & Malmberg, J. (2023), Examining socially shared regulation and shared physiological arousal events with multimodal learning analytics, British Journal of Educational Technology, 54(1), 293-312. https://doi.org/10.1111/bjet.13280
  57. Kim, M. K., Kim, N. J., & Heidari, A. (2022), Learner experience in artificial intelligence-scaffolded argumentation, Assessment & Evaluation in Higher Education, 47(8), 1301-1316. https://doi.org/10.1080/02602938.2022.2042792
  58. Chen, Y. C. (2022), Effects of technology-enhanced language learning on reducing EFL learners' public speaking anxiety, Computer Assisted Language Learning, 1-25.
  59. Sharma, K., Papamitsiou, Z., & Giannakos, M. (2019), Building pipelines for educational data using AI and multimodal analytics: a "grey-box" approach, British Journal of Educational Technology, 50(6), 3004-3031. https://doi.org/10.1111/bjet.12854
  60. Wang, H., & Lehman, J. D. (2021), Using achievement goal-based personalized motivational feedback to enhance online learning, Educational Technology Research and Development, 69, 553-581. https://doi.org/10.1007/s11423-021-09940-3
  61. Sargazi Moghadam, T., Darejeh, A., Delaramifar, M., & Mashayekh, S. (2023), Toward an artificial intelligence-based decision framework for developing adaptive e-learning systems to impact learners' emotions, Interactive Learning Environments, 1-21.
  62. Conati, C., Barral, O., Putnam, V., & Rieger, L. (2021), Toward personalized XAI: A case study in intelligent tutoring systems, Artificial intelligence, 298, 1-23. https://doi.org/10.1016/j.artint.2021.103503
  63. Bennani, S., Maalel, A., & Ben Ghezala, H. (2022), Adaptive gamification in E learning: a literature review and future challenges, Computer Applications in Engineering Education, 30(2), 628-642. https://doi.org/10.1002/cae.22477
  64. Daghestani, L. F., Ibrahim, L. F., Al-Towirgi, R. S., & Salman, H. A. (2020), Adapting gamified learning systems using educational data mining techniques, Computer Applications in Engineering Education, 28(3), 568-589. https://doi.org/10.1002/cae.22227
  65. Dai, D. D. (2021), Artificial intelligence technology assisted music teaching design, Scientific Programming, 2021, 1-10. https://doi.org/10.1155/2021/9141339
  66. Lin, Y. S., & Lai, Y. H. (2021), Analysis of ai precision education strategy for small private online courses, Frontiers in Psychology, 12, 1-10. https://doi.org/10.3389/fpsyg.2021.749629
  67. Tang, H., & Wei, Y. (2022), Classification and analysis of college students' skills using hybrid AI models, Journal of Mathematics, 2022, 1-10. https://doi.org/10.1155/2022/4428416
  68. Wang, S., Qiu, L., & Sun, C. (2022), Adaptive education system for drama education in college education system based on human-computer, International Journal of Human-Computer Interaction, 1-16.
  69. Kim, M., Yeom, J., Jung, H., & Lim, C. (2021), A review of research on artificial intelligence chatbot in education through the lens of activity theory, The Journal of Educational Information and Media, 27(2), 699-721. https://doi.org/10.15833/KAFEIAM.27.2.699
  70. Perez, J. Q., Daradoumis, T., & Puig, J. M. M. (2020), Rediscovering the use of chatbots in education: a systematic literature review, Computer Applications in Engineering Education, 28(6), 1549-1565. https://doi.org/10.1002/cae.22326