Acknowledgement
This research was supported by Korea Environmental Industry & Technology Institute (KEITI) through "The Project to develop eco-friendly new materials and processing technology derived from wildlife," funded by the Korea Ministry of Environment (MOE) (2021003270007).
References
- Andersen, R. A. & Kawachi, M. 2005. Traditional microalgae isolation techniques. In Anderson, R. A. (Ed.) Algal Culturing Techniques. Elsevier Academic Press, Burlington, MA, pp. 83-92.
- Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J. -S., Jin, E. & Bae, S. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6:30620.
- Beakes, G. W., Canter, H. M. & Jaworski, G. H. M. 1988. Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Can. J. Bot. 66:1054-1067. https://doi.org/10.1139/b88-151
- Bruder, K. & Medlin, L. K. 2007. Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. Nova Hedwigia 85:331-352. https://doi.org/10.1127/0029-5035/2007/0085-0331
- Chonova, T., Kurmayer, R., Rimet, F., Labanowski, J., Vasselon, V., Keck, F., Illmer, P. & Bouchez, A. 2019. Benthic diatom communities in an alpine river impacted by waste water treatment effluents as revealed using DNA metabarcoding. Front. Microbiol. 10:653.
- Crowell, R. M., Nienow, J. A. & Cahoon, A. B. 2019. The complete chloroplast and mitochondrial genomes of the diatom Nitzschia palea (Bacillariophyceae) demonstrate high sequence similarity to the endosymbiont organelles of the dinotom Durinskia baltica. J. Phycol. 55:352-364. https://doi.org/10.1111/jpy.12824
- Finlay, B. J., Monaghan, E. B. & Maberly, S. C. 2002. Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153:261-273. https://doi.org/10.1078/1434-4610-00103
- Gao, B., Chen, A., Zhang, W., Li, A. & Zhang, C. 2017. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J. Ocean Univ. China 16:916-924. https://doi.org/10.1007/s11802-017-3174-2
- Gerin, S., Delhez, T., Corato, A., Remacle, C. & Franck, F. 2020. A novel culture medium for freshwater diatoms promotes efficient photoautotrophic batch production of biomass, fucoxanthin, and eicosapentaenoic acid. J. Appl. Phycol. 32:1581-1596. https://doi.org/10.1007/s10811-020-02097-1
- Griffiths, M. J. & Harrison, S. T. L. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21:493-507. https://doi.org/10.1007/s10811-008-9392-7
- Guo, X., Tang, Y., Yin, J., Li, R., Qin, B., Jiang, L., Chen, X. & Huang, Z. 2022. Long-term manganese exposure-mediated benthic diatom assemblage in a subtropical stream: distribution, substrate preferences and Mn-tolerance. J. Environ. Manag. 322:116153.
- Jeong, B. -R., Jang, J. & Jin, E. 2023. Genome engineering via gene editing technologies in microalgae. Bioresour. Technol. 373:128701.
- Kanazawa, K., Ozaki, Y., Hashimoto, T., Das, S. K., Matsushita, S., Hirano, M., Okada, T., Komoto, A., Mori, N. & Nakatsuka, M. 2008. Commercial-scale preparation of biofunctional fucoxanthin from waste parts of brown sea algae Laminalia japonica. Food Sci. Technol. Res. 14:573-582. https://doi.org/10.3136/fstr.14.573
- Khaw, Y. S., Yusoff, F. M., Tan, H. T., Noor Mazli, N. A. I., Nazarudin, M. F., Shaharuddin, N. A., Omar, A. R. & Takahashi, K. 2022. Fucoxanthin production of microalgae under different culture factors: a systematic review. Mar. Drugs 20:592.
- Ki, J.- S. & Han, M. -S. 2005. Molecular analysis of complete SSU to LSU rDNA sequence in the harmful dinoflagellate Alexandrium tamarense (Korean isolate, HY970328M). Ocean Sci. J. 40:43-54. https://doi.org/10.1007/BF03022609
- Kilham, P. & Hecky, R. E. 1988. Comparative ecology of marine and freshwater phytoplankton. Limnol. Oceanogr. 33:776-795. https://doi.org/10.4319/lo.1988.33.4_part_2.0776
- Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E. & Herrera, L. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147-159. https://doi.org/10.1023/A:1003231628456
- Kim, S. M., Kang, S. -W., Kwon, O. -N., Chung, D. & Pan, C.-H. 2012. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem. 55:477-483. https://doi.org/10.1007/s13765-012-2108-3
- Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
- Litchman, E., Klausmeier, C. A. & Yoshiyama, K. 2009. Contrasting size evolution in marine and freshwater diatoms. Proc. Natl. Acad. Sci. U. S. A. 106:2665-2670. https://doi.org/10.1073/pnas.0810891106
- Lu, X., Sun, H., Zhao, W., Cheng, K. -W., Chen, F. & Liu, B. 2018. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar. Drugs 16:219.
- Maberly, S. C., Gontero, B., Puppo, C., Villain, A., Severi, I. & Giordano, M. 2021. Inorganic carbon uptake in a freshwater diatom, Asterionella formosa (Bacillariophyceae): from ecology to genomics. Phycologia 60:427-438. https://doi.org/10.1080/00318884.2021.1916297
- Marella, T. K., Lopez-Pacheco, I. Y., Parra-Saldivar, R., Dixit, S. & Tiwari, A. 2020. Wealth from waste: diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci. Total Environ. 724:137960.
- Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9:359-372. https://doi.org/10.1029/95GB01070
- Seth, K., Kumar, A., Rastogi, R. P., Meena, M., Vinayak, V. & Harish. 2021. Bioprospecting of fucoxanthin from diatoms: challenges and perspectives. Algal Res. 60:102475.
- Smetacek, V. 1999. Diatoms and the ocean carbon cycle. Protist 150:25-32. https://doi.org/10.1016/S1434-4610(99)70006-4
- Thompson, J. D., Higgins, D. G. & Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Tiam, S. K., Lavoie, I., Doose, C., Hamilton, P. B. & Fortin, C. 2018. Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology 27:675-688. https://doi.org/10.1007/s10646-018-1945-1
- Treguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M. & Pondaven, P. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11:27-37. https://doi.org/10.1038/s41561-017-0028-x
- Trobajo, R., Clavero, E., Chepurnov, V. A., Sabbe, K., Mann, D. G., Ishihara, S. & Cox, E. J. 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48:443-459. https://doi.org/10.2216/08-69.1
- Trobajo, R., Mann, D. G., Chepurnov, V. A., Clavero, E. & Cox, E. J. 2006. Taxonomy, life cycle, and auxosporulation of Nitzschia fonticola (Bacillariophyta). J. Phycol. 42:1353-1372. https://doi.org/10.1111/j.1529-8817.2006.00291.x
- Vilmi, A., Karjalainen, S. M., Landeiro, V. L. & Heino, J. 2015. Freshwater diatoms as environmental indicators: evaluating the effects of eutrophication using species morphology and biological indices. Environ. Monit. Assess. 187:243.
- Wang, S., Wu, S., Yang, G., Pan, K., Wang, L. & Hu, Z. 2021. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol. Adv. 53:107865.
- Xia, S., Wang, K., Wan, L., Li, A., Hu, Q. & Zhang, C. 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar. Drugs 11:2667-2681. https://doi.org/10.3390/md11072667
- Xiao, H., Zhao, J., Fang, C., Cao, Q., Xing, M., Li, X., Hou, J., Ji, A. & Song, S. 2020. Advances in studies on the pharmacological activities of fucoxanthin. Mar. Drugs 18:634.
- Yang, R., Wei, D. & Xie, J. 2020. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit. Rev. Biotechnol. 40:993-1009. https://doi.org/10.1080/07388551.2020.1805402