DOI QR코드

DOI QR Code

Synchronous nuclear division and the role of the cytoskeleton in the multinucleate red alga Griffithsia monilis

  • Chan Young Hong (Department of Biological Sciences, Kongju National University) ;
  • Ji Ho Yun (Department of Biological Sciences, Kongju National University) ;
  • Minseok Kwak (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Jong Seok Moon (Department of Biological Sciences, Kongju National University) ;
  • Gwang Hoon Kim (Department of Biological Sciences, Kongju National University)
  • Received : 2023.07.15
  • Accepted : 2023.09.06
  • Published : 2023.09.15

Abstract

Most taxonomic groups of organisms harbor temporarily or permanently multinucleate cells in all or parts of their bodies. Each nucleus in the same cytoplasm responds almost identically to environmental cues, but little is known about the signals that mediate their coordinated division. In this study, we used Griffithsia monilis, a multinucleated giant cell, to investigate how its nuclear division occurs and the role of cytoskeleton in this process. Our results show that nuclear division is exquisitely coordinated and synchronized, but that nuclear division and chloroplast division are not coupled to each other. Microtubules are known to play an important role in synchronized nuclear division in some large multinucleate green algae, and microtubule arrangement is involved in shaping the cytoplasmic domains of each nucleus. However, we found no evidence for the involvement of the cytoskeleton in the synchronized nuclear division or regular nuclear arrangement in G. monilis. Although the nuclei were arranged at very regular intervals, these intervals became irregular during nuclear division, and there was no regular arrangement of actin or microtubules to maintain the spacing between the nuclei. Neither cortical microtubules nor spindle microtubules were physically connected to other neighboring nuclei during nuclear division, suggesting that microtubules are not involved in the coordination of nuclear division in G. monilis.

Keywords

Acknowledgement

The authors express their sincere thanks to Prof. Joe Zuccarello for his valuable comments. This work was supported by the management of Marine Fishery Bioresources Center (2023) funded by the National Marine Biodiversity Institute of Korea (MABIK) and by Development of technology for biomaterialization of marine fisheries by-products of Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (KIMST-20220128) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019M3C1B7025093).

References

  1. Favery, B., Quentin, M., Jaubert-Possamai, S. & Abad, P. 2016. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. J. Insect Physiol. 84:60-69. https://doi.org/10.1016/j.jinsphys.2015.07.013
  2. Garbary, D. J., McDonald, A. R. & Duckett, J. G. 1992. Visualization of the cytoskeleton in red algae using fluorescent labelling. New Phytol. 120:435-444. https://doi.org/10.1111/j.1469-8137.1992.tb01084.x
  3. Gladfelter, A. S. 2006. Nuclear anarchy: asynchronous mitosis in multinucleated fungal hyphae. Curr. Opin. Microbiol. 9:547-552. https://doi.org/10.1016/j.mib.2006.09.002
  4. Goff, L. J. & Coleman, A. W. 1987. The solution to the cytological paradox of isomorphy. J. Cell Biol. 104:739-748. https://doi.org/10.1083/jcb.104.3.739
  5. Goff, L. J. & Coleman, A. W. 1990. DNA: microspectrofluorometric studies. In Cole, K. M. & Sheath, G. R. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 43-72.
  6. Imoto, Y., Yoshida, Y., Yagisawa, F., Kuroiwa, H. & Kuroiwa, T. 2011. The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. J. Electron Microsc. 60(Suppl 1):S117-S136.
  7. Jorgensen, P., Edgington, N. P., Schneider, B. L., Rupes, I., Tyers, M. & Futcher, B. 2007. The size of the nucleus increases as yeast cells grow. Mol. Biol. Cell. 18:3523-3532. https://doi.org/10.1091/mbc.e06-10-0973
  8. Kim, G. H. & Kim, S. -H. 1999. The role of F-actin during fertilization in the red alga Aglaothamnion oosumiense (Rhodophyta). J. Phycol. 35:806-814. https://doi.org/10.1046/j.1529-8817.1999.3540806.x
  9. Kim, G. H., Nagasato, C., Kwak, M., Lee, J. W., Hong, C. Y., Klochkova, T. A. & Motomura, T. 2022. Intercellular transport across pit-connections in the filamentous red alga Griffithsia monilis. Algae 37:75-84. https://doi.org/10.4490/algae.2022.37.2.16
  10. Klochkova, T. A., Yoon, K. S., West, J. A. & Kim, G. H. 2005. Experimental hybridization between some marine coenocytic green algae using protoplasms extruded in vitro. Algae 20:239-249. https://doi.org/10.4490/ALGAE.2005.20.3.239
  11. Luttke, A. & Bonotto, S. 1982. Multinucleate cyst formation in Acetabularia mediterranea after x-irradiation. Planta 155:97-104. https://doi.org/10.1007/BF00392538
  12. McDonald, A. R., Garbary, D. J. & Duckett, J. G. 1993. Rhodamine-phalloidin staining of F-actin in Rhodophyta. Biotech. Histochem. 68:91-98. https://doi.org/10.3109/10520299309104673
  13. McDonald, A. R., Garbary, D. J., Mitman, G. G. & Chen, L. C.-M. 1992. Rhodamine-phalloidin labelling of the actin cytoskeleton in Porphyra leucosticta (Bangiaceae, Rhodophyta). Korean J. Phycol. 7:161-166.
  14. McNaughton, E. E. & Goff, L. J. 1990. The role of microtubules in establishing nuclear spatial patterns in multinucleate green algae. Protoplasma 157:19-37. https://doi.org/10.1007/BF01322636
  15. Meissner, A. & Jaenisch, R. 2006. Mammalian nuclear transfer. Dev. Dyn. 235:2460-2469. https://doi.org/10.1002/dvdy.20915
  16. Menzel, D. 1994. Cell differentiation and the cytoskeleton in Acetabularia. New Phytol. 128:369-393. https://doi.org/10.1111/j.1469-8137.1994.tb02984.x
  17. Moon, J. -S., Hong, C. -Y., Lee, J. -W. & Kim, G. -H. 2022. ROS signaling mediates directional cell elongation and somatic cell fusion in the red alga Griffithsia monilis. Cells 11:2124.
  18. Nigg, E. A. 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2:21-32. https://doi.org/10.1038/35048096
  19. Niklas, K. J., Cobb, E. D. & Crawford, D. R. 2013. The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evol. Dev. 15:466-474. https://doi.org/10.1111/ede.12055
  20. Ondracka, A., Dudin, O. & Ruiz-Trillo, I. 2018. Decoupling of nuclear division cycles and cell size during the coenocytic growth of the ichthyosporean Sphaeroforma arctica. Curr. Biol. 28:1964-1969.e2. https://doi.org/10.1016/j.cub.2018.04.074
  21. Pueschel, C. M. 1990. Cell structure. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 7-41.
  22. Shapiguzov, A., Vainonen, J. P., Wrzaczek, M. & Kangasjarvi, J. 2012. ROS-talk: how the apoplast, the chloroplast, and the nucleus get the message through. Front. Plant Sci. 3:292.
  23. Shim, E., Park, H., Im, S. H., Zuccarello, G. C. & Kim, G. H. 2020. Dynamics of spermatial nuclei in trichogyne of the red alga Bostrychia moritziana (Florideophyceae). Algae 35:389-404. https://doi.org/10.4490/algae.2020.35.12.7
  24. Shim, E., Zuccarello, G. C. & Kim, G. H. 2021. Sex-specific genes and their expression in the life history of the red alga Bostrychia moritziana (Ceramiales, Rhodomelaceae). J. Phycol. 57:528-540. https://doi.org/10.1111/jpy.13103
  25. Simon, C. S., Sturmer, V. S. & Guizetti, J. 2021. How many is enough?: challenges of multinucleated cell division in malaria parasites. Front. Cell. Infect. Microbiol. 11:658616.
  26. Storchova, Z. & Pellman, D. 2004. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5:45-54. https://doi.org/10.1038/nrm1276
  27. Strasburger, E. 1913. Pflanzliche Zellen- und Gewebelehre. In von Wettstein, R. (Ed.) Zellen- und Gewebelehre, Morphologie und Entwicklunggeschichte. B. G. Teubner Verlag, Leipzig, pp. 1-174.
  28. Wieland, T., Miura, T. & Seeliger, A. 1983. Analogs of phalloidin: D-Abu2-Lys7-phalloin, an F-actin binding analog, its rhodamine conjugate (RLP) a novel fluorescent F-actin-probe, and D-Ala2-Leu7-phalloin, an inert peptide. Int. J. Pept. Protein Res. 21:3-10. https://doi.org/10.1111/j.1399-3011.1983.tb03071.x
  29. Wilson, S. M., Pickett-Heaps, J. D. & West, J. A. 2002. Fertilization and the cytoskeleton in the red alga Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Eur. J. Phycol. 37:509-522. https://doi.org/10.1017/S0967026202003931
  30. Yabuta, N., Okada, N., Ito, A., Hosomi, T., Nishihara, S., Sasayama, Y., Fujimori, A., Okuzaki, D., Zhao, H., Ikawa, M., Okabe, M. & Nojima, H. 2007. Lats2 is an essential mitotic regulator required for the coordination of cell division. J. Biol. Chem. 282:19259-19271. https://doi.org/10.1074/jbc.M608562200
  31. Yoshida, K. & Shimmen, T. 2009. Involvement of actin filaments in rhizoid morphogenesis of Spirogyra. Physiol. Plant. 135:98-107. https://doi.org/10.1111/j.1399-3054.2008.01172.x