DOI QR코드

DOI QR Code

Mathematical model for rock-soil slope stability based on numerical solution

  • Shan Hua (School of Earth Science and Resources, Chang'an University) ;
  • Maryam Shokravi (Department of Education, Mehrab High School) ;
  • S.S. Wang (School of Earth Science and Resources, Chang'an University)
  • 투고 : 2023.04.26
  • 심사 : 2023.10.23
  • 발행 : 2023.11.10

초록

In this article, a two-phase random medium is assumed for geometric interfaces between rock and soil based on Gaussian field and piezoelectric layer. The structure is modeled by thick plate mathematically and the numerical model is applied to approximation the statistical features of the safety. The elastic medium is simulated with two parameters of spring and shear. The structure is modelled by sinusoidal shear deformation theory (SSDT) and by utilizing the energy method, the final governing equations are derived. Using differential quadrature method, the motion equations are solved for obtaining the failure mode of the rock-soil slope. The results show that the safety factor of rock is dependent to the soil volume faction significantly. Numerical results show that as the structure length is increased, the safety load is decreased. In addition, the application of negative voltage improves the safety of the structure.

키워드

참고문헌

  1. Alesadi, A., Galehdari, M. and Shojaee, S. (2017), "Free vibration and stability analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013. 
  2. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical stability of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457. 
  3. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2018), "Stability of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput., 18(6), 1053-106. https://doi.org/10.12989/cac.2016.18.6.1053. 
  4. Eltaher, M.A. and Mohamed, S.A. (2022), "Stability and stability analysis of sandwich beams subjected to varying axial loads", Geomech. Eng., 34(2), 241-260. https://doi.org/10.12989/gae.2022.34.2.241. 
  5. Khelifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M. (2018), "Stability response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125. 
  6. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for stability in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9. 
  7. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032. 
  8. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023. 
  9. Mehri, M., Asadi, H. and Wang, Q. (2016), "Stability and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Method. Appl. M., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017. 
  10. Mosharrafian, F. and Kolahchi, R., (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on stability of piezoelectric pipes", Struct. Eng. Mech., 58(5), 931-947. https://doi.org/10.12989/sem.2016.58.5.931.
  11. Motezaker, M. and Eyvazian, A. (2022), "Post-stability analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Geomech. Eng., 34(2), 289-297. https://doi.org/10.12989/gae.2022.34.2.289. 
  12. Motezaker, M. and Eyvazian, A. (2022), "Stability load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2022.73.5.481 
  13. Mun, S. and Cho, Y.H. (2012), "Modified harmony search optimization for constrained design problems", Exp. Syst. Appl., 39, 419-423, https://doi.org/10.1016/j.eswa.2011.07.031. 
  14. Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Stability and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. J. Appl. Mech., 8, 1650008. https://doi.org/10.1142/S1758825116500083. 
  15. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, stability, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009. 
  16. Vodenitcharova, T. and Zhang, L. (2006), "Bending and local stability of a nanocomposite beam reinforced by a single-walled carbon nanotube", Int. J. Solids Struct., 43, 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014. 
  17. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Stability and poststability of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048. 
  18. Yas, M. and Samadi, N. (2012), "Free vibrations and stability analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012. 
  19. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the stability behaviour of embedded beams reinforced with SiO2 nano-particles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.