DOI QR코드

DOI QR Code

Pullout capacity analysis of an inclined shallow anchor plate embedded in sloping rock ground

  • Hong-tao Wang (School of Civil Engineering, Shandong Jianzhu University) ;
  • Fu-qiang Fan (School of Civil Engineering, Shandong Jianzhu University) ;
  • Yan-qing Men (Jinan Rail Transit Group Co., Ltd.) ;
  • Hong-jun Zhang (Shandong Geological Sci. Institute) ;
  • Xue-lei Xie (School of Civil Engineering, Shandong Jianzhu University)
  • Received : 2022.08.15
  • Accepted : 2023.10.09
  • Published : 2023.11.10

Abstract

To calculate the pullout capacity of a shallow-buried inclined strip anchor plate in sloping rock ground, this paper constructed a curve uplift failure mechanism of rock mass above the anchor plate. In this mechanism, the plane strain hypothesis in elasto-plastic mechanics and the Hoek-Brown failure criterion were employed. Then, according to the upper bound method and variational principle, this paper deduced the analytical expressions for the rock failure surface equation and for the anchor plate's ultimate pullout capacity in the limit state. Further, based on an equivalent transformation method of Hoek-Brown failure criterion, this paper analyzed the influence laws of the embedment depth/width ratio, ground inclination, anchor plate inclination and generalized Hoek-Brown strength parameters on the anchor plate's ultimate pullout capacity and rock failure range. Finally, a series of numerical simulation for pullout failure processes of a strip anchor plate with six inclinations were carried out to verify the validity of the proposed theoretical method. The research work in this paper can provide some theoretical reference for design and construction of strip anchor plates in sloping rock ground.

Keywords

Acknowledgement

Much of the work presented in this paper was supported by the National Natural Science Foundation of China (No. 52374093), Project funded by China Postdoctoral Science Foundation (No. 2022M711314), Shandong Provincial Natural Science Foundation (No. ZR2022ME088), and a Project of Shandong Province Higher Educational Science and Technology Program (J16LG04). The authors also would like to express appreciation to the reviewers for their valuable comments and suggestions, which improved the paper much.

References

  1. Bhattacharya, P. and Kumar, J. (2016), "Uplift capacity of anchors in layered sand using finite-element limit analysis: Formulation and results", Int. J. Geomech., 16(3), 04015078. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000560.
  2. Bhattacharya, P. (2016), "Pullout capacity of strip plate anchor in cohesive sloping ground under undrained condition", Comput. Geotech., 78, 134-143. https://doi.org/10.1016/j.compgeo.2016.05.006
  3. Chen, W.F. (1975), Limit analysis and soil plasticity. Elsevier, Amsterdam.
  4. Choudhary, A.K. and Dash, S.K. (2017), "Load-carrying mechanism of vertical plate anchors in sand", Int. J. Geomech., 17(5), 04016116. https://doi.org/10.1061/(ASCE)GM.1943-5622.00008.
  5. Cerfontaine, B., Knappett, J.A., Brown, M.J. and Bradshaw , A.S. (2019), "Effect of soil deformability on the failure mechanism of shallow plate or screw anchors in sand", Comput. Geotech.. 109, 34-45. https://doi.org/10.1016/j.compgeo.2019.01.007.
  6. Gao, Y.T., Yang, Z.M., Cheng, Z.Q., Jiang, Y. and Ren, Y. (2011), "Limit analysis of tunnel collapse according to the Hoek-Brown criterion and bolt parameter research", Arabian J. Sci. Eng., 44(10), 8171-8180. https://doi.org/10.1007/s13369-019-03731-y.
  7. Ganesh, R. (2020), "Vertical uplift resistance of close-spaced shallow rectangular group anchor plates embedded in sand", Mar. Georesour. Geotechnol., 38(9), 1070-1081. https://doi.org/10.1080/1064119X.2019.1650403.
  8. Hoek, E. and Broen, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  9. Hoek, E. and Marinos, P. (2007), "A brief history of the development of the Hoek-Brown failure criterion", Soils Rocks, (2).
  10. Hao, D.X., Fu, S.N. and Chen, R. (2014), "Numerical analysis of uplift capacity of circular plate anchor in sand", 19, 18947-18961.
  11. Hanna, A., Foriero, A. and Ayadat, T. (2015), "Pullout capacity of inclined shallow single anchor plate in sand", Indian Geotech. J., 45(1), 110-120. https://doi.org/10.1007/s40098-014-0113-7.
  12. Han, C., Wang, D., Gaudin, C., O'Loughlin, C.D. and Cassidy, M.J. (2016), "Behaviour of vertically loaded plate anchors under sustained uplift", Geotechnique, 66(8), 681-693. https://doi.org/10.1680/jgeot.15.P.232.
  13. Hoek, E. and Broen, E.T. (2019), "The Hoek-Brown failure criterion and GSI-2018 edition", J. Rock Mech. Geotech. Eng., 11(3), 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001.
  14. Hu, W., Meng, J.W., Yao, C. And Lwi, Y. (2020), "A method for calculating vertical pullout ultimate bearing capacity of shallow circular anchor plate", Rock Soil Mech., 41(9), 3049-3055.
  15. Hu, S., Zhao, L., Tan, Y., Yang, F., Wang, Z. And Zhao, Z. (2021), "Variation analysis of uplift bearing characteristics of strip anchor plate in nonhomogeneous materials", Int. J. Geomech., 21(4), 04021037. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001974.
  16. Hu, S., Zhao, L., Tan, Y., Luo, Y. and Zeng, Z. (2022), "Three-dimensional upper-bound limit analysis of ultimate pullout capacity of anchor plates using variation method", Int. J. Numer. Anal. Method. Geomech., 46(7), 1356-1379. https://doi.org/10.1002/nag.3349.
  17. Kumar, J. and Kouzer, K.M. (2008), "Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements", Can. Geotech. J., 45(5), 698-704. https://doi.org/10.1139/T08-005.
  18. Khatri, V.N. and Kumar, J. (2009), "Vertical uplift resistance of circular plate anchors in clays under undrained condition", Compu. Geotech., 36(8), 1352-1359. https://doi.org/10.1016/j.compgeo.2009.06.008.
  19. Perazzelli, P. and Anagnostou, G. (2017), "Uplift resistance of strip anchors in cohesive frictional mediums of limited tensile strength", Int. J. Geomech., 17(9), 04017042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000901.
  20. Rokonuzzaman, M. and Sakai, T. (2012), "Model tests and 3D finite element simulations of uplift resistance of shallow rectangular anchor foundations", Int. J. Geomech., 12(2), 105-112. https://doi.org/10.1061/(ASCE)GM.1943-5622.00001.
  21. Roy, A. (2020), "Numerical and experimental investigation of plate anchor capacity in sand", The University of Western Australia.
  22. Wang, H.T., Li, S.C., Wang, Q., Miao, S.J. and Jiang, B. (2014), "Limit analysis of ultimate pullout capacity of shallow horizontal strip anchor plate based on nonlinear failure criterion", Eng. Mech., 31(2), 131-138. https://doi.org/10.6052/j.issn.1000-4750.2012.09.0699.
  23. Wang, Q., Gao, H.K., Yu, H.C., Jiang, B. and Liu, B.H. (2019), "Method for measuring rock mass characteristics and evaluating the grouting-reinforced effect based on digital drilling", Rock Mech. Rock Eng., 52, 841-851. https://doi.org/10.1007/s00603-018-1624-9
  24. Wang, H.T., Wang, L.G., Li, S.C., Wang, Q., Liu, P. and Li, X. (2019), "Roof collapse mechanisms for a shallow tunnel in two-layer rock strata incorporating the influence of groundwater", Eng. Fail. Anal., 98, 215-227. https://doi.org/10.1016/j.engfailanal.2019.01.062.
  25. Wang, Q., Gao, H.K., Jiang, Z.H., Li, S.C. and Jiang, B. (2020), "Development and application of a surrounding rock digital drilling test system of underground engineering", Chinese J. Rock Mech. Eng., 39(2), 301-310.
  26. Wang, H.T., Liu, L.Y., Li, S.C., Wang, Q., Li, W. and Meng, Q. (2021), "An upper bound design method for roof bolting support in roadways with top coal", Arabian J. Geosci., 14(9), 1-12. https://doi.org/10.1007/s12517-021-06660-z.
  27. Yang, M.H., Ai, Z.C. and Deng, B. (2020), "Experimental and analytical study on uplift loading capacity of strip plate anchors near sand slope", Int. J. Geomech., 20(1), 04019136. https://doi.org/10.1061/(ASCE)GM.1943-5622.000152.
  28. Zhang, R. and Yang, X.L. (2019), "Limit analysis of anchor trapdoor embedded in nonhomogeneous and nonlinear soils", Int. J. Geomech., 19(8), 04019089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001476.
  29. Zhu, H.H., Zhang, Q. and Zhang, L.Y. (2013), "Review of research progresses and applications of Hoek-Brown strength criterion", Chinese J. Rock Mech. Eng., 32(10), 1945-1963.
  30. Zhao, L.H., Tan, Y.G., Nie, Z.H., Yang, X.P. and Hu, S.H. (2018), "Variation analysis of ultimate pullout capacity of shallow horizontal strip anchor plate with 2-layer overlying soil based on nonlinear MC failure criterion", J. Central South Univ., 25(11), 2802-2818. https://doi.org/10.1007/s10706-022-02357-6
  31. Zhao, L., Gong, X., Hu, S., Tan, Y. and Zhao, Z. (2022), "Effects of heterogeneity and nonlinearity on uplift characteristics of shallow horizontal anchor plates", Geotech. Geol. Eng., 41, 1615-1634. https://doi.org/10.1007/s10706-022-02357-6.
  32. Zuo, J. and Shen, J. (2020), The Hoek-Brown failure criterion-from theory to application. Singapore: Springer Nature Singapore Private Limited.