DOI QR코드

DOI QR Code

Study on the root interaction characteristics and nonlinear deformation prediction of root piles

  • Jilu Zhang (School of Civil Engineering, Chongqing University) ;
  • Xiaohan Zhou (School of Civil Engineering, Chongqing University) ;
  • Xuefeng Huang (School of Civil Engineering, Lanzhou University of Technology) ;
  • Xinrong Liu (School of Civil Engineering, Chongqing University) ;
  • Jun Yuan (Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group) ;
  • Xuelan Liang (Construction Branch of State Grid Qinghai Electric Power Company) ;
  • Juan Li (Qinghai Power Transmission and Transfer Engineering Co. Ltd.)
  • 투고 : 2022.12.24
  • 심사 : 2023.09.27
  • 발행 : 2023.11.10

초록

As a new type of pile foundation, root piles have attracted more attention in the uplift design especially because of their unique structure. In this paper, based on the field tests the bearing capacity and load transfer law of straight pile, belled pile and roots pile were analysed. Results found the setting of multiple layers of roots along the pile depth can make the root resistance and skin friction resistance work simultaneously which improve the uplift resistance greatly. By using the numerical simulation tool, the uplift resistance of pile is analysed under the influence of different root length, density (number of roots) and spacing. It is found that increasing the root length and spacing can effectively improve the uplift resistance of the pile. However, the effect of increasing the spacing of roots is more significant. With increasing the roots density, the interaction development process between roots will assume to four main stages: stage I no interaction, stage II weak interaction, stage III strong interaction and stage IV strengthen. When the roots density is at stage II, there will be a high uplift resistance in addition to a little interaction. Finally, based on the load transfer method, a nonlinear deformation calculation method for the roots pile under uplift load were established. This method not only considered the influence of different stress conditions and roots positions on load distribution of roots, but also consider the influence of roots interaction at same layer and between layers on the uplift resistance.

키워드

과제정보

This work was supported by the Qinghai Electric Power Company Limited (52283820000A), the Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group (XB1-TM05-2017) and the National Natural Science Foundation of China (Grant Nos. 41972266 and 41772319). Moreover, the authors gratefully thank the editors' and anonymous reviewers' suggestions and comments.

참고문헌

  1. AbdelSalam, S.S., Suleiman. M.T. and Sritharan, S. (2014), "Modeling load-transfer behavior of H-piles using direct shear and penetration test results", Geotech. Test J., 37(4).
  2. Boonyatee, T. and Lai, Q.V. (2020), "A non-linear load transfer method for determining the settlement of piles under vertical loading", Int. J. Geotech. Eng., 14(2), 206-217. https://doi.org/10.1080/19386362.2017.1410337.
  3. Cooke, R.W., Price, G. and Tarr, K. (1979), "Jacked piles in London Clay: a study of load transfer and settlement under working conditions", Geotechnique, 29(29), 113-147. https://doi.org/10.1680/geot.1979.29.2.113.
  4. Castelli, F., Maugeri, M. and Motta, E. (1992), "Analisinon lineare delcedimento diun Palo Singolo", Ital Geotech. J., 26(1), 115-135.
  5. Chalmovsky, J. and Mica, L. (2020), "Prediction of the load-displacement response of ground anchors via the load-transfer method", Geomech. Eng., 20(4), 359-370. https://doi.org/10.12989/gae.2020.20.4.359.
  6. Cui, M.Z., Ren, W.X. and Yin, Y.G. (2021), "Numerical analysis and field load testing of a suspension bridge with a root pile anchorage", Structures, 34, 1373-1382. https://doi.org/10.1016/j.istruc.2021.08.086.
  7. D 'Appolonia, E. and Romualdi, J.P. (1963), "Load transfer in end-bearing steel H-piles", ASCE Soil Mech. Found. Div. J., 89(2), 11-25. https://doi.org/10.1061/JSFEAQ.0000496.
  8. Ding, H., Su, L.J., Lai, J.X. and Zhang, Y.H. (2017), "Development and prospect of root Piles in tunnel foundation reinforcement", Civ. Eng. J.Staveb. Obz., 26(3). https://doi.org/10.14311/CEJ.2017.03.0022.
  9. Dias, T.G.S. and Bezuijen, A. (2018), "Load-transfer method for piles under axial loading and unloading", J. Geotech. Geoenviron., 144(1), 1-9. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001808.
  10. Fan, Z.H., Wang, Y.H., Xiao, H.B. and Zhang, C.S. (2007), "Analytical method of load-transfer of single pile under expansive soil swelling", J. Cent. South Univ. T, 14(4), 575-579. https://doi.org/10.1007/s11771-007-0110-4.
  11. Huang, M.S., Zhang, C.R., Mu, L.L. and Gong, W.M. (2011), "Analysis of anchor foundation with root caissons loaded in nonhomogeneous soils", Can Geotech. J., 48(2), 234-246. https://doi.org/10.1139/T10-046.
  12. JGJ 94-2008 (2008), Technical code for building pile foundations, China Architecture Press, Beijing, China.
  13. JGJ 106-2014 (2014), Technical code for testing of building foundation piles. China Architecture Press, Beijing, China.
  14. Kulhawy, F.H., Kozera, D.W. and Withiam, J.L. (1979), "Uplift testing of model drilled shafts in sand", J. Geotech. Eng. Div. - ASCE, 105(1), 31-47. https://doi.org/10.1061/AJGEB6.000075.
  15. Kong, G.Q., Yang, Q., Liu, H.L. and Liang, R.Y. (2013), "Numerical study of a new belled wedge pile type under different loading modes", Eur. J. Environ. Civ. En., 17, 65-82. https://doi.org/10.1080/19648189.2013.834586.
  16. Liu, J.W., Guo, Z. and Han, B. (2019), "Load transfer of offshore open-ended pipe piles considering the effect of soil plugging", J. Mar. Sci. Eng., 7(9), 1-19. https://doi.org/10.3390/jmse7090313.
  17. Liu, X.R., Zhuang, Y., Zhou, X.H., Li, C., Lin, B.B., Liang, N.H., Zhong, Z.L. and Deng, Z.Y. (2023), "Numerical study of the mechanical process of long-distance replacement of the definitive lining in severely damaged highway tunnels", Undergr. Sp., 9, 200-217. https://doi.org/10.1016/j.undsp.2022.07.007.
  18. Luo, X.G., Ren, W.X., Yin, Y.G. and Yu, Y.C. (2022), "A modified hyperbolicity-based load transfer model for nonlinear settlement analysis of root piles in multilayered soils", Acta Geotech., 17(1), 303-317. https://doi.org/10.1007/s11440-021-01215-8.
  19. Moayedi, H. and Mosallanezhad, M. (2017), "Uplift resistance of belled and multi-belled piles in loose sand", Measurement, 109, 346-353. https://doi.org/10.1016/j.measurement.2017.06.001.
  20. O'Neill, M.W. (2001), "Side resistance in piles and drilled shafts", J. Geotech. Geoenviron., 127(1), 3-16. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(3).
  21. Qian, Z.Z., Lu, X.L. and Yang, W.Z. (2019), "Comparative field tests on straight-sided and belled piers on sloping ground under combined uplift and lateral loads", J. Geotech. Geoenviron., 145(1), 1-14. https://doi.org/10.1061/(ASCE)GT.1943-5606.00019.
  22. Randolph, M.F. and Wroth, C.P. (1978), "Analysis of the deformation of vertically loaded piles", J. Geotech. Eng. Div. - ASCE, 104(12), 1465-1488. https://doi.org/10.1061/AJGEB6.0000729
  23. Reddy, E.S.B., Oreilly, M. and Chapman, D. (1997) "A software to predict the behaviour of tension piles", Comput. Struct., 62(4), 653-658. https://doi.org/10.1016/S0045-7949(97)80002-3.
  24. Rattley, M.J., Richards, D.J. and Lehane, B.M. (2008), "Uplift performance of transmission tower foundations embedded in clay", J. Geotech. Geoenviron., 134(4), 531-540. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(531).
  25. Seed, H.B. and Reese, L.C. (1957), "The action of soft clay along friction piles", Transactions of the Am. Soc. Civil Engineers, 122, 731-754. https://doi.org/10.1061/TACEAT.0007501
  26. Wang, R. (2013), "Derivation and revision of the theoretical formula of friction stress between pile and soil on space axisymmetric condition considering relative slip", Appl. Mech. Mater., 405-408, 237-242. https://doi.org/10.4028/www.scientific.net/AMM.405-408.237.
  27. Wang, Q.K., Hu, Z.B., Ji, Y.K., Ma, J.L. and Chen, W.L. (2022), "Centrifugal model test based bearing characteristics and analytical model of uplift pile in combined composite ground", Rock Mech. Rock Eng., 55(6), 3525-3543. https://doi.org/10.1007/s00603-022-02820-z.
  28. Xu, C.J., Ding, H.B., Luo, W.J., Tong, L., Chen, Q.S. and Deng, J.L. (2020), "Experimental and numerical study on performance of long-short combined retaining piles", Geomech. Eng., 20(3), 255-265. https://doi.org/10.12989/gae.2020.20.3.255.
  29. Yao, W.J., Chen, S.P. and Zhu, S.Q. (2012), "Elasto-plastic analysis method for vertically loaded pile considering pile-soil slip", Appl. Mech. Mater., 105-107, 1567-1571. https://doi.org/10.4028/www.scientific.net/AMM.105-107.1567.
  30. Yu, M.Y., Liu, B.G., Wang, Q. and Song, Y. (2020), "Study on bearing capacity of belled uplift piles in soft clay area", Indian Geotech. J., 50(5), 848-858. https://doi.org/10.1007/s40098-020-00420-8.
  31. Zhang, S.G., Yuan, Z.R. and Sun, C.H. (2013), "Nonlinear analysis of deformation for belled tension piles under vertical loading", Chinese J. Geotech. Eng., 35(2), 1091-1094. (in Chinese)
  32. Zhou, J.P., Huang, X.F., Zhang, J.L., Wei, L.H. and Yuan, J. (2021), "Experimental investigation of the uplift and lateral bearing capacity of root piles", Soil. Mech. Found. Eng., 57(6), 473-479. https://doi.org/10.1007/s11204-021-09695-2.