DOI QR코드

DOI QR Code

Lithium Extraction from Spent Lithium-Ion Batteries (LIBs) Using Mechanochemical Process: A Comprehensive Review

  • Yuik Eom (Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University) ;
  • Richard Diaz Alorro (Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University) ;
  • Jonah Gamutan (Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University) ;
  • Aleksandar N. Nikoloski (College of Science, Health, Engineering & Education, Murdoch University)
  • 투고 : 2023.10.11
  • 심사 : 2023.10.23
  • 발행 : 2023.10.31

초록

The rapidly rising demand for lithium has made the recycling of spent lithium-ion battery highly attractive. However, the conventional process has faced environmental problems due to gas and wastewater generation, high-energy consumption, and the use of strong acids/alkalis for an extended period of time. An innovative recycling technology exploiting the mechanochemical process is proposed to overcome the drawbacks of the conventional process and improve the metal recovery from spent batteries. In general, the unique mechanism by mechanochemical reaction enables metal extraction with non-hazardous materials and minimal use of solvents at ambient temperature. This emerging technique can be combined with hydrometallurgical processes and offers potential for reagent regeneration. This article reviews different recycling technologies for spent lithium-ion battery cathode materials, particularly the mechanochemical process, to achieve circular economy in spent battery recycling and enhance lithium recovery.

키워드

참고문헌

  1. Swain, B., 2017 : Recovery and recycling of lithium: A review, Separation and Purification Technology, 172, pp.388-403.  https://doi.org/10.1016/j.seppur.2016.08.031
  2. Schipper, F., Aurbach, D., 2016 : A brief review: Past, present and future of lithium ion batteries, Russian Journal of Electrochemistry, 52(12), pp.1095-1121.  https://doi.org/10.1134/S1023193516120120
  3. Martin, G., Rentsch, L., Hock, M., et al., 2017 : Lithium market research - global supply, future demand and price development, Energy Storage Materials, 6, pp.171-179.  https://doi.org/10.1016/j.ensm.2016.11.004
  4. Harper, G., Sommerville, R., Kendrick, E., et al., 2019 : Recycling lithium-ion batteries from electric vehicles, Nature, 575(7781), pp.75-86.  https://doi.org/10.1038/s41586-019-1682-5
  5. IEA, 2022 : Global EV Outlook 2022, IEA, Paris. https://www.iea.org/reports/global-ev-outlook-2022, July 4, 2023. 
  6. Zheng, X., Zhu, Z., Lin, X., et al., 2018 : A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries, Engineering, 4(3), pp.361-370.  https://doi.org/10.1016/j.eng.2018.05.018
  7. Winslow, K. M., Laux, S. J., Townsend, T. G., 2018 : A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resources, Conservation and Recycling, 129, pp.263-277.  https://doi.org/10.1016/j.resconrec.2017.11.001
  8. Fan, M., Chang, X., Meng, Q., et al., 2021 : Progress in the sustainable recycling of spent lithium-ion batteries, SusMat. 1(2), pp.241-254.  https://doi.org/10.1002/sus2.16
  9. Wang, M., Liu, K., Yu, J., et al., 2022 : Recycling spent lithium-ion batteries using a mechanochemical approach, Circular Economy, p.100012. 
  10. Liu, C., Lin, J., Cao, H., et al., 2019 : Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, Journal of Cleaner Production, 228, pp.801-813.  https://doi.org/10.1016/j.jclepro.2019.04.304
  11. Yoo, K., 2023 : Lithium Ion Battery Recycling Industry in South Korea, Resources Recycling, 32(1), pp.13-20.  https://doi.org/10.7844/kirr.2023.32.1.13
  12. Dolotko, O., Gehrke, N., Malliaridou, T., et al., 2023 : Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry, Communications Chemistry, 6(1), pp.1-8. 
  13. Balaz, P., Balaz, M., Bujnakova, Z., 2014 : Mechanochemistry in Technology: From Minerals to Nanomaterials and Drugs, Chemical Engineering & Technology, 37(5), pp.747-756.  https://doi.org/10.1002/ceat.201300669
  14. Mateti, S., Mathesh, M., Liu, Z., et al., 2021 : Mechanochemistry: A force in disguise and conditional effects towards chemical reactions, Chemical Communications, 57(9), pp.1080-1092.  https://doi.org/10.1039/D0CC06581A
  15. Tan, Q., Li, J., 2015 : Recycling Metals from Wastes: A Novel Application of Mechanochemistry, Environmental Science & Technology, 49(10), pp.5849-5861.  https://doi.org/10.1021/es506016w
  16. Ou, Z., Li, J., Wang, Z., 2015 : Application of mechanochemistry to metal recovery from second-hand resources: a technical overview, Environmental Science: Processes & Impacts, 17(9), pp.1522-1530.  https://doi.org/10.1039/C5EM00211G
  17. Fan, E., Li, L., Zhang, X., et al., 2018 : Selective Recovery of Li and Fe from Spent Lithium-Ion Batteries by an Environmentally Friendly Mechanochemical Approach, ACS Sustainable Chemistry & Engineering, 6(8), pp.11029-11035.  https://doi.org/10.1021/acssuschemeng.8b02503
  18. Li, L., Bian, Y., Zhang, X., et al., 2019 : A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries, Waste Management, 85, pp.437-444.  https://doi.org/10.1016/j.wasman.2019.01.012
  19. Zhang, Q., Fan, E., Lin, J., et al., 2023 : Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO4 batteries, Journal of Hazardous Materials, 443, p.130160. 
  20. Liu, K., Liu, L., Tan, Q., et al., 2019 : Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution, Environmental Science & Technology, 53(16), pp.9781-9788.  https://doi.org/10.1021/acs.est.9b01919
  21. Liu, K., Wang, M., Zhang, Q., et al., 2023 : A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments, Journal of Hazardous Materials, 445, p.130502. 
  22. Liu, K., Liu, L., Tan, Q., et al., 2021 : Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation, Green Chemistry, 23(3), pp.1344-1352.  https://doi.org/10.1039/D0GC03683H
  23. Saeki, S., Lee, J., Zhang, Q., et al., 2004 : Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product, International Journal of Mineral Processing, 74, pp.373-378.  https://doi.org/10.1016/S0301-7516(04)00103-6
  24. Wang, M. M., Zhang, C. C., Zhang, F. S., 2017 : Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process, Waste Management, 67, pp.232-239.  https://doi.org/10.1016/j.wasman.2017.05.013
  25. Yang, Y., Zheng, X., Cao, H., et al., 2017 : A Closed-Loop Process for Selective Metal Recovery from Spent Lithium Iron Phosphate Batteries through Mechanochemical Activation, ACS Sustainable Chemistry & Engineering, 5(11), pp.9972-9980.  https://doi.org/10.1021/acssuschemeng.7b01914
  26. Wang, M. M., Zhang, C. C., Zhang, F. S., 2016 : An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach, Waste Management, 51, pp.239-244.  https://doi.org/10.1016/j.wasman.2016.03.006
  27. Cai, L., Lin, J., Fan, E., et al., 2022 : Eco-friendly organic acid-assisted mechanochemical process for metal extraction from spent lithium-ion batteries, ACS Sustainable Chemistry & Engineering, 10(32), pp.10649-10657.  https://doi.org/10.1021/acssuschemeng.2c02553
  28. Wang, M., Tan, Q., Li, J., 2018 : Unveiling the Role and Mechanism of Mechanochemical Activation on Lithium Cobalt Oxide Powders from Spent Lithium-Ion Batteries, Environmental Science & Technology, 52(22), pp.13136-13143.  https://doi.org/10.1021/acs.est.8b03469
  29. Qu, L., He, Y., Fu, Y., et al., 2022 : Enhancement of leaching of cobalt and lithium from spent lithium-ion batteries by mechanochemical process, Transactions of Nonferrous Metals Society of China, 32(4), pp.1325-1335.  https://doi.org/10.1016/S1003-6326(22)65877-1
  30. Zhao, Y., Yuan, X., Jiang, L., et al., 2020 : Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chemical Engineering Journal, 383, p.123089. 
  31. Jie, Y., Yang, S., Li, Y., et al., 2020 : Oxidizing Roasting Behavior and Leaching Performance for the Recovery of Spent LiFePO4 Batteries, Minerals, 10(11), p.949. 
  32. Li, C. C., Chang, S. J., Chen, C. A., 2017 : Effects of sp2- and sp3-carbon coatings on dissolution and electrochemistry of water-based LiFePO4 cathodes, Journal of Applied Electrochemistry, 47(9), pp.1065-1072.  https://doi.org/10.1007/s10800-017-1105-y
  33. Song, Y., Zhao, T., He, L., et al., 2019 : A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate, Hydrometallurgy, 189, p.105141. 
  34. Wang, M., Tan, Q., Huang, Q., et al., 2021 : Converting spent lithium cobalt oxide battery cathode materials into high-value products via a mechanochemical extraction and thermal reduction route, Journal of Hazardous Materials, 413, p.125222. 
  35. Zhang, J., Hu, J., Liu, Y., et al., 2019 : Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO4 Batteries, ACS Sustainable Chemistry & Engineering, 7(6), pp.5626-5631.  https://doi.org/10.1021/acssuschemeng.9b00404
  36. Kumar, J., Neiber, R. R., Park, J., et al., 2022 : Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery, Chemical Engineering Journal, 431, p.133993.